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Preface

History of this Book Series: Water and
Wastewater Engineering

This book, Water Engineering, is the second textbook in the
Water and Wastewater Engineering series, which is a revision
of the classic text, originally authored by Professors Gordon
M. Fair (Harvard University), John C. Geyer (John Hopkins
University), and Daniel A. Okun (University of North Car-
olina). Professors Daniel A. Okun and Marvin L. Granstorm
(Rutger University) were the driving forces of this new global
edition that includes both US and SI design equations and
examples. The current authors, Professors Nazih K. Sham-
mas and Lawrence K. Wang were the students of Professor
Okun, and Professor Granstorm, respectively. Just before
beginning the preparation of this new edition of Water and
Wastewater Engineering, the last surviving member of the
original authors, Professor Daniel A. Okun, died on Decem-
ber 10, 2007. In the normal course of events Professor Okun
would have been with the current authors in preparing this
book series. This new book series is dedicated to the memory
of Professors Fair, Geyer, Okun, and Granstrom.

Goals of this Book: Water Engineering

Today, effective design and effcient operation of water engi-
neering works ask, above all, for a fuller understanding and
application of scientifc principles. Thus, the results of scien-
tifc research are being incorporated with remarkable success
in new designs and new operating procedures. Like other
felds of engineering, water engineering has its science and
its art. To reach the audience to which this book is addressed,
the science of water engineering is given principal empha-
sis. However, the art of water engineering is not neglected.
Enough elements of water engineering practice, experience,
common sense, and rules of thumb are included to keep the
reader aware of the water environment and constructions that
place water at the service of cities and towns, and of villages
and homesteads.

Further Study in Addition to Classroom Education

The study of scientifc principles is best accomplished in the
classroom; the application of these principles follows as a
matter of practice. To further bridge the way from princi-
ple to practice, we suggest that the study of these textbooks
be supplemented by (1) visits to water works, (2) examina-
tion of plans and specifcations of existing water systems,
(3) readings in the environmental science and engineering
periodicals, (4) study of the data and handbook editions of

trade journals, (5) examination of the catalogs and bulletins
of equipment manufacturers, and (6) searching for the latest
water engineering developments from the Internet.

Intended Audience

Like its forerunners, this new book, Water Engineering, is
intended for students of civil and environmental engineering,
no matter whether they belong to the student body of a uni-
versity or are already established in their profession. Specif-
ically, the target audience is engineering students who have
had introductory calculus, chemistry and fuid mechanics,
typically civil, environmental and water resources engineer-
ing majors. Several chapters of the book contain introduc-
torymaterial appropriate for juniors aswell asmore advanced
material that might only be appropriate for upper-level under-
graduate engineering students. Specifcally, applied hydrol-
ogy, hydraulics, and pertinent physical, chemical, and bio-
logical properties of water are reviewed. The inclusion of
this material makes this book important also to physical and
investment planners of urban and regional developments.
In this sense, too, this book and other books in the new
series should be of interest to chemical engineers, geologists,
chemists, and biologists who are collaborators of the water
environment.

Course Suggestions

The book is comprehensive and covers all aspects of water
including its quality, sources, supply, drinking water stan-
dards, treatment, transmission, storage, and distribution.
This comprehensive coverage gives faculty the fexibility
of choosing the material as they fnd ft for their courses,
and this wide coverage is helpful to water engineers in their
everyday practice.

Courses where this book may be used include

1. Water engineering

2. Water supply, transmission and distribution system

3. Water treatment

4. Design of water treatment plants

5. Design of water distribution networks

6. Civil and sanitary engineering design

7. Environmental engineering design

8. Hydraulics

9. Water resources engineering

xvii



xviii Preface

Key Features of This Book

Several items unique to this textbook include

1. Solved problems. A reliable problem-solving expe-
rience for students is carried out throughout the text
and demonstrated in every example problem to rein-
force best practices.

2. Photos and illustrations. Photos and illustrations
are used throughout the text to clarify water engi-
neering infrastructure systems and show examples
of built and constructed water supply, transmission,
treatment, storage and distribution facilities.

3. Current water treatment and infrastructure
issues. Current infrastructure and global issues are
addressed in the text. Examples of such issues
include (a) established water treatment technologies;
(b) conventional and new pathogenic microorgan-
isms and impurities; (c) Cryptosporidium, volatile
organic compounds, heavy metals, and disinfection
by-products control; (d) fotation, membrane fltra-
tion, and UV; (e) groundwater under the direct infu-
ence of surface water; (f) dual water systems; (g)
cross-connections control and backfow prevention;
(h) design nomograms for fast water infrastructure
analysis; (i) computer-aided water distribution sys-
temmodeling and analysis; (j) water safety and emer-
gency response.

4. Engineering equations and example problems
with bothUSandSIUnits for training engineers to
work globally. The text has a multitude of examples
and problems. Such problems incorporate both SI and
the more customary US unit systems. We feel that
most other texts fall short in both these areas by not
providing students with examples that help explain
diffcult technical concepts and by only focusing on
one system of units.

5. Applied hydraulics.Hydraulics concepts are critical
for the civil, environmental and water resources engi-
neering professionals, and thus the readers. Applied
hydraulics topics such as pumps, weirs, pressurized
pipe fow, gravity fow, head losses are reviewed
in this book for practical design of water-handling
facilities.

6. Prevention through design, residuals manage-
ment, and water system safety. Chapter 23 is ded-
icated to prevention through design (PtD), as it is
important for readers to learn about this new strat-
egy. NIOSH is promoting the inclusion of PtD in

undergraduate engineering education, has reviewed
this chapter and provided the illustrative case studies
described in Chapter 6, Water Distribution Systems:
Components, Design, and Operation, and Chapter
22, Residues Management, Safety, and Emergency
Response. Other water engineering texts do not
address these important topics.

Instructor Resources

The following resources are available to instructors on the
book website at:

1. Solutions manual. Complete solutions for every
homework problem and answers to all discussion
questions in the text will be available to instructors.

2. Image gallery. Images from the text in electronic
format, for preparation of lecture PowerPoint slides.

3. Access to student resources. Instructors will also
have access to all the student resources.

The instructor resources are password protected, andwill
be made available to instructors who have adopted the text
for their course. Visit the instructor section of the website to
register for a password.

Student Resources

The following resources are available to students on the book
website at:

1. Data sets. Data sets for all examples and homework
exercises in the text will be provided, so that students
may perform what-if scenarios, and to avoid errors
due to data entry during problem solving.

2. Access to design software. Included with the text, so
students may download the software from an online
source.

Software

Included with this text is access to the software Haestad
Methods Water Solutions by Bentley. Software exhibited in
the text, include WaterGEMS that is used to illustrate the
application of various available software programs in helping
civil and environmental engineers design and analyze water
distribution systems. It is also used by water utility managers
as a tool for the effcient operation of distribution systems.
See Chapter 7, Water Distribution Systems: Modeling and
Computer Applications.
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Chapter 1

Introduction to Water Systems

The right to water is an implicit part of the right to an ade-
quate standard of living and the right to the highest attainable
standard of physical and mental health, both of which are
protected by the United Nations’ International Covenant on
Economic, Social andCultural Rights,whichwas established
in 1976. However, some countries continue to deny the legit-
imacy of this right. In light of this fact and because of the
widespread noncompliance of states with their obligations
regarding the right to water, the United Nations’ Committee
on Economic, Social and Cultural Rights confrmed and fur-
ther defned the right to water in its General Comment No.
15 in 2002. The comment clearly states that the right to water
emanates from and is indispensable for an adequate standard
of living as it is one of the most fundamental conditions for
survival:

The human right to water entitles everyone to
suffcient, safe, acceptable, physically accessible
and affordable water for personal and domestic
uses. An adequate amount of safe water is neces-
sary to prevent death from dehydration, reduce
the risk of water-related disease and provide for
consumption, cooking, personal and domestic
hygienic requirements.

According to the World Health Organization (WHO),
1.1 billion people (17% of the global population) lack access
to safe drinking water, meaning that they have to revert to
unprotected wells or springs, canals, lakes, or rivers to fetch
water; 2.6 billion people lack adequate sanitation; and 1.8
million people die every year from diarrheal diseases, includ-
ing 90% of children under age 5. This situation is no longer
bearable. To meet the WHO’sWater for Life Decade (2005–
2015), an additional 260,000 people per day need to gain
access to improved water sources.

In 2004 about 3.5 billion people worldwide (54% of the
global population) had access to piped water supply through
house connections. Another 1.3 billion (20%) had access
to safe water through other means than house connections,
including standpipes, “water kiosks,” protected springs, and
protected wells.

In the United States 95% of the population that is served
by community water systems receives drinking water that
meets all applicable health-based drinking water standards
through effective treatment and source water protection. In
2007, approximately 156,000 US public drinking water sys-
tems served more than 306 million people. Each of these sys-
tems regularly supplied drinking water to at least 25 people
or 15 service connections. Beyond their common purpose,
the 156,000 systems vary widely. Table 1.1 groups water
systems into categories that show their similarities and dif-
ferences. For example, the table shows thatmost people in the
United States (286 million) get their water from a commu-
nity water system. Of the approximately 52,000 community
water systems, just 8% of those systems (4048) serve 82%
of the people.

Water is used in population centers for many purposes:
(a) for drinking and culinary uses; (b) for washing, bathing,
and laundering; (c) for cleaning windows, walls, and foors;
(d) for heating and air conditioning; (e) for watering lawns
and gardens; (f) for sprinkling and cleaning streets; (g) for
flling swimming and wading pools; (h) for display in foun-
tains and cascades; (i) for producing hydraulic and steam
power; (j) for employment in numerous and varied industrial
processes; (k) for protecting life and property against fre; and
(l) for removing offensive and potentially dangerous wastes
from households, commercial establishments, and industries.
To provide for these varying uses, which total about 100 gal-
lons per capita per day (gpcd) or 378 liters per capita per
day (Lpcd) in average North American residential commu-
nities and 150 gpcd (568 Lpcd) or more in large industrial
cities, the supply of water must be satisfactory in quality and
adequate in quantity, readily available to the user, relatively
cheap, and easily disposed of after it has served its many
purposes. Necessary engineering works are waterworks, or
water supply systems, and wastewater works, or wastewater
management systems.

Waterworks withdraw water from natural sources of
supply, purify it if necessary, and deliver it to the con-
sumer. Wastewater works collect the spent water of the
community—about 70% of the water supplied—together
with varying amounts of entering ground and surface waters.
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2 Chapter 1 Introduction to Water Systems

Table 1.1 US public water systems size by population served in 2007

Very small Small Medium Large Very large
Water system (500 or less) (501–3,300) (3,301–10,000) (10,001–100,000) (>100,000) Total

Community
water systema

No. of systems 29,282 13,906 4,822 3,702 398 52,110
Population
served

4,857,007 19,848,329 27,942,486 105,195,727 128,607,655 286,451,204

Percentage of
systems

56 27 9 7 1 100

Percentage of
population

2 7 10 37 45 100

Nontransient
noncommunity
water systemb

No. of systems 16,034 2,662 120 22 1 18,839
Population
served

2,247,556 2,710,330 639,561 533,845 203,000 6,334,292

Percentage of
systems

85 14 1 0 0 100

Percentage of
population

35 43 10 8 3 100

Transient
noncommunity
water systemc

No. of systems 81,873 2,751 102 15 3 84,744
Population
served

7,230,344 2,681,373 546,481 424,662 2,869,000 13,751,860

Percentage of
systems

97 3 0 0 0 100

Percentage of
population

53 19 4 3 21 100

Total no. of systems 127,189 19,319 5,044 3,739 402 155,693

Source: Courtesy US Environmental Protection Agency.
aCommunity water system: a public water system that supplies water to the same population year-round.
bNontransient noncommunity water system: a public water system that regularly supplies water to at least 25 of the same people at least 6 months per year,
but not year-round. Some examples are schools, factories, offce buildings, and hospitals that have their own water systems.
cTransient noncommunity water system: a public water system that provides water in a place such as a gas station or campground where people do not
remain for long periods of time.

The collected wastewaters are treated and reused or dis-
charged, usually into a natural water body, more rarely onto
land. Often the receiving body of water continues to serve
also as a source of important water supplies for many pur-
poses. It is this multiple use of natural waters that creates the
most impelling reasons for sound water quality management.

1.1 COMPONENTS OF WATER SYSTEMS

Each section of this chapter offers, in a sense, a preview of
matters discussed at length in later parts of this book. There
they are dealt with as isolated topics to be mastered in detail.
Here they appear in sequence as parts of the whole so that
their general purpose and signifcance in the scheme of things
may be understood and may give reason for closer study.

Municipal water systems generally comprise (a)
collection works, (b) purifcation works, (c) transmission
works, and (d) distribution works. The relative functions and
positions of these components in a surface water supply are
sketched in Fig. 1.1. Collection works either tap a source
continuously adequate in volume for present and reasonable
future demands or convert an intermittently insuffcient
source into a continuously adequate supply. To ensure

adequacy, seasonal and, in large developments, even annual
surpluses must be stored for use in times of insuffciency.
When the quality of the water collected is not satisfactory,
purifcation works are introduced to render it suitable for
the purposes it must serve: contaminated water is disin-
fected; aesthetically displeasing water made attractive and
palatable; water containing iron or manganese deferrized or
demanganized; corrosive water deactivated; and hard water
softened. Transmission works convey the collected and
purifed supply to the community, where distribution works
dispense it to consumers in wanted volume at adequate
pressure. Ordinarily, the water delivered is metered so that
an equitable charge can be made for its use and, often, also
for its disposal after use.

1.2 REQUIRED CAPACITY

Water supply systems are designed to meet population needs
for a reasonable number of years in the future. The rate of
consumption is normally expressed as the mean annual use
in gpcd or Lpcd, and seasonal, monthly, daily, and hourly
departures in rate are given in percentages of the mean. In
North America the spread in consumption is large: from
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Divide

Yield

Reservoir

Filters

Reservoir and dam

Collection system

Water shed, catchment
area, or drainage area

100 mi2

Purification works

Distribution system

Distribution
system

Pipeline

Pipeline Service
reservoir

Municipality

Area = 1 mi2

Rainfall = 40 in./yr
Evaporation = 20 in./yr
Stream flow or runoff = 20 in./yr
  = 348 MG/yr/mi2

  = 952,000 gpd/mi2

Water surface = 4.3 mi2

Average depth = 15 ft
Storage = 13.5 billion gal
  = 180 days of draft

Population = 500,000
Consumption = 150 gpcd
    = 75 MGD
  = 750,000 gpd/mi2

    = 79% of mean annual
            rainfall

Figure 1.1 Rainfall, runoff, storage,
and draft relations in the
development of surface water
(conversion factors:
1 mi2 = 2.59 km2;
1 in.∕yr = 25.4 mm∕yr;
1 ft = 0.3048 m;
1 MG∕yr∕mi2 = 1.46 ML∕yr∕km2;
1 gpd∕mi2 = 1.461 L∕d∕km2;
1 billion gal = 1 BG =
3.785 billion L = 3.785 BL;
1 gpcd = 3.785 Lpcd;
1 MGD = 3.785 MLD).

35 to 500 gpcd (132–1890 Lpcd), varying radically with
industrial water demands. Average rates between 100 and
200 gpcd (378–757 Lpcd) are common, and a generalized
average of 150 gpcd (568 Lpcd) is a useful guide to normal
requirements.

The capacity of individual system components is set by
what is expected of them. Distribution systems, for example,
must be large enough to combat and control serious con-
fagrations without failing to supply maximum coincident
domestic and industrial drafts. Fire demands vary with size
and value of properties to be protected and are normally a
function of the gross size of the community. The distribu-
tion system leading to the high-value district of an average
American city of 100,000 people, for example, must have an
excess of fre standby capacity equal in itself to the average
rate of draft. For smaller or larger American communities,
the standby capacity falls or rises, within certain limits, more
or less in proportion to the square root of the population.

1.3 SOURCES OF WATER SUPPLY

The source of water commonly determines the nature of the
collection, purifcation, transmission, and distribution works.
Common sources of freshwater and their development are as
follows:

1. Rainwater:
(a) From roofs, stored in cisterns, for small individ-

ual supplies.

(b) From larger, prepared watersheds, or catches,
stored in reservoirs, for large communal supplies.

2. Surface water:
(a) From streams, natural ponds, and lakes of suff-

cient size, by continuous draft.

(b) From streamswith adequate food fows, by inter-
mittent, seasonal, or selective draft of clean food-
waters, and their storage in reservoirs adjacent to
the streams, or otherwise readily accessible from
them.

(c) From streams with low dry-weather fows but
suffcient annual discharge, by continuous draft
through storage of necessary fows in excess of
daily use in one or more reservoirs impounded
by dams thrown across the stream valleys.

(d) From brackish and seawater by desalination.
Desalination is an artifcial process by which
saline water is converted to freshwater. The most
common desalination processes are distillation
and reverse osmosis. Desalination is currently
expensive compared to most alternative sources
of water, and only a small fraction of total human
use is satisfed by desalination. It is only eco-
nomically practical for high-valued uses (such
as household and industrial uses) in arid areas.
The most extensive use is in the Persian (Ara-
bian) Gulf. Mildly saline waters (brackish) are
desalted most economically by reverse osmosis;
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strongly saline waters by evaporation and con-
densation.

3. Groundwater:
(a) From natural springs.

(b) From wells.

(c) From infltration galleries, basins, or cribs.

(d) Fromwells, galleries, and, possibly, springs, with
fows augmented from some other source (i)
spread on the surface of the gathering ground,
(ii) carried into charging basins or ditches, or (iii)
led into diffusion galleries or wells.

(e) From wells or galleries with fows maintained
by returning to the ground the water previously
withdrawn from the same aquifer for cooling or
similar purposes.

Several schemes have been proposed to make use of
icebergs as a water source; to date, however, this has only
been done for novelty purposes. One of the serious moves
toward the practical use of icebergs is the formation of an
Arabian–American investment group to search for the opti-
mal way to transport and melt icebergs for use as a source of
drinking water supply without the need for on-land storage.
Glacier runoff is considered to be surface water.

An iceberg is a large piece of freshwater ice that has
broken off from a snow-formed glacier or ice shelf and is
foating in open water. Because the density of pure ice is
about 920 kg/m3 and that of sea water about 1025 kg/m3,
typically only one-tenth of the volume of an iceberg is above
water. The shape of the rest of the iceberg under the water can
be diffcult to surmise from looking at what is visible above
the surface. Icebergs generally range from 1 to 75 m (about
3–250 ft) above sea level and weigh 100,000–200,000 metric
tonne (about 110,000–220,000 short ton). The tallest known

iceberg in the North Atlantic was 168 m (about 551 ft) above
sea level, making it the height of a 55 story building. Despite
their size, icebergs move an average of 17 km (about 10 mi)
a day. These icebergs originate from glaciers and may have
an interior temperature of –15◦C to −20◦C (5◦F to − 4◦F).

Municipal supplies may be derived from more than
one source, the yields of available sources ordinarily
being combined before distribution. Dual public water sup-
plies (see Chapter 8) of unequal quality are unusual in
North America. However, they do exist, for example, as a
high-grade supply for general municipal uses and a low-
grade supply for specifc industrial purposes or frefghting.
Unless the low-grade (nonpotable) supply is rigorously dis-
infected, its existence is frowned on by health authorities
because it may be cross-connected, wittingly or unwittingly,
with the high-grade (potable) supply. A cross-connection is
defned as a junction between water supply systems through
which water from doubtful or unsafe sources may enter an
otherwise safe supply.

1.4 RAINWATER

Rain is rarely the immediate provenance of municipal water
supplies. Instead, the capture of rainwater is confned to farms
and rural settlements usually in semiarid regions devoid of
satisfactory ground or surface waters. On homesteads, rain-
water running off roofs is led through gutters and downspouts
to rain barrels or cisterns situated on or in the ground. Storage
transforms the intermittent rainfall into a continuous supply.
For municipal service, sheds or catches on ground that is
naturally impervious or made tight by grouting, cementing,
paving, or similar means must usually be added.

The gross yield of rainwater is proportional to the receiv-
ing area and the amount of precipitation. However, some rain

EXAMPLE 1.1 CALCULATING THE VOLUME OF RAINFALL THAT CAN BE COLLECTED FROM A
BUILDING ROOF

Make a rough estimate of the volume in gallons or liters of water that can be caught by 3,000 ft2 (278.7 m2) of horizontally projected
roof area (the average area of American farm buildings) in a region where the mean annual rainfall is 15 in. (38.1 cm).

Solution 1 (US Customary System):

Gross yield = 3,000 ft2 × (15∕12 ft) × 7.48 gal∕ft3 = 28,100 gal annually = 28,100 gal∕365 days
= 77 gpd.

Net yield approximates two-thirds gross yield = 18,800 gal annually = 51 gpd.

About half the net annual yield, or 9,400 gal = 1,250 ft3, must normally be stored to tide the supply over dry spells.

Solution 2 (SI System):

Gross yield = (278.7 m2)(38.1∕100 m)(1,000 L∕m3) = 106,178 L annually = 291 L∕day
= 291 L∕d.

Net yield approximates two-thirds gross yield = 291 L∕d (2∕3) = 194 L∕d = 70,790 L∕year.
About half the net annual yield = 0.5 (70,790 L∕year) = 35,395 L = 35.4 m3 must be stored to tide the supply over dry spells.



1.5 Surface Water 5

is blown off the roof, evaporated, or lost in wetting the col-
lecting surfaces and conduits and in flling depressions or
improperly pitched gutters. Also, the frst fush of water may
have to be wasted because it contains dust, bird droppings,
and other unwanted materials. The combined loss may be
high. A cutoff, switch, or defector in the downspout permits
selective diversion of unwanted water from the system. Sand
flterswill cleanse thewater as it enters the cistern and prevent
its deterioration via the growth of undesirable organisms and
consequent tastes, odors, and other changes in attractiveness
and palatability.

The storage to be provided in cisterns depends on the
distribution of rainfall. Storage varies with the length of dry
spells and commonly approximates one-third to one-half the
annual consumption. If rainfalls of high intensity are to be
captured, standby capacity must exist in advance of fltration.
Because their area is small, roofs seldom yield much water.
A careful analysis of storm rainfalls and seasonal variations
in precipitation is, therefore, required.

1.5 SURFACE WATER

In North America by far the largest volumes of municipal
water are collected from surface sources. The quantities that
can be gathered vary directly with the size of the catch-
ment area, or watershed, and with the difference between
the amounts of water falling on it and the amounts lost by
evapotranspiration. The signifcance of these relationships to
water supply is illustrated in Fig. 1.1. Where surface water
and groundwater sheds do not coincide, some groundwater
may enter from neighboring catchment areas or escape to
them.

1.5.1 Continuous Draft

Communities on or near streams, ponds, or lakes may take
their supplies from them by continuous draft if stream fow
and pond or lake capacity are high enough at all seasons of
the year to furnish requisite water volumes. Collecting works
ordinarily include (a) an intake crib, gatehouse, or tower; (b)
an intake conduit; and (c) in many places, a pumping station.
On small streams serving communities of moderate size, an
intake or diversion dam may create suffcient depth of water
to submerge the intake pipe and protect it against ice. From
intakes close to the community the water must generally be
lifted to purifcation works and thence to the distribution
system.

Most large streams are polluted bywastes from upstream
communities and industries. Purifcation of their waters is
then a necessity. Cities on large lakes usually guard their sup-
plies against their own and their neighbor’s wastewater and
spent industrial-process waters by moving their intakes far
away from shore and purifying both their water and wastew-
ater. Diversion of wastewater from lakes will retard the lakes’
eutrophication.

1.5.2 Selective Draft

Low stream fows are often left untouched. They may be
wanted for other downstream purposes or they may be too
highly polluted for reasonable use. Only clean foodwaters
are then diverted into reservoirs constructed in meadow lands
adjacent to the stream or otherwise conveniently available.
The amount of water so stored must supply demands during
seasons of unavailable stream fow. If draft is confned to a
quarter year, for example, the reservoir must hold at least
three-fourths of the annual supply. In spite of its selection
and long storage, the water may have to be purifed.

1.5.3 Impoundage

In their search for clean water and water that can be brought
and distributed to the community by gravity, engineers have
developed supplies from upland streams. Most of them are
tapped near their source in high and sparsely settled regions.
To be of use, their annual discharge must equal or exceed
the demands of the community they serve for a reasonable
number of years in the future. Because their dry season fows
generally fall short of concurrent municipal requirements,
their foodwaters must usually be stored in suffcient vol-
ume to ensure an adequate supply. Necessary reservoirs are
impounded by throwing dams across the stream valley. In this
way, amounts up to the mean annual fow can be utilized. The
area draining to an impoundment is known as the catchment
area or watershed. Its economical development depends on
the value of water in the region, but it is a function, too,
of runoff and its variation, accessibility of catchment areas,
interference with existing water rights, and costs of construc-
tion. Allowances must be made for evaporation from new
water surfaces generated by the impoundage (Fig. 1.2) and
also often for release of agreed-on fows to the valley below
the dam (compensating water). Increased ground storage in
the fooded area and the gradual diminution of reservoir vol-
umes by siltation must also be considered.

Intake structures are incorporated in impounding dams
or kept separate. Other important components of impounding
reservoirs are (a) spillways safely passing foods in excess of
reservoir capacity and (b) diversion conduits safely carrying
the stream past the construction site until the reservoir has
been completed and its spillway can go into action. Analysis
of food records enters into the design of these ancillary
structures.

Some impounded supplies are suffciently safe, attrac-
tive, and palatable to be used without treatment other than
protective disinfection. However, it may be necessary to
remove high color imparted to the storedwater by the decom-
position of organic matter in swamps and on the fooded
valley bottom; odors and tastes generated in the decomposi-
tion or growth of algae, especially during the frst years after
flling; and turbidity (fnely divided clay or silt) carried into
streams or reservoirs by surface wash, wave action, or bank
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Figure 1.2 A watershed lake in Western Missouri provides water
supply (Courtesy of the National Resources Conservation Service
and USDA).

erosion. Recreational uses of watersheds and reservoirs may
call for treatment of the fows withdrawn from storage.

Much of the water in streams, ponds, lakes, and reser-
voirs in times of drought, or when precipitation is frozen, is
seepage from the soil. Nevertheless, it is classifed as surface

runoff rather than groundwater. Water seeps from the ground
when surface streams are low and to the ground when sur-
face streams are high. Release of water from ground storage
or from accumulations of snow in high mountains is a deter-
mining factor in the yield of some catchment areas. Although
surface waters are derived ultimately from precipitation, the
relations between precipitation, runoff, infltration, evapora-
tion, and transpiration are so complex that engineers rightly
prefer to base calculations of yield on available stream gaug-
ings. For adequate information, gaugings must extend over a
considerable number of years.

1.6 GROUNDWATER

Smaller in daily delivery, but many times more numerous
than surface water supplies, are the municipal and private
groundwater supplies of North America. Groundwater is
drawn from many different geological formations: (a) from
the pores of alluvial (water-borne), glacial, or aeolian (wind-
blown) deposits of granular, unconsolidated materials such
as sand and gravel, and from consolidated materials such as
sandstone; (b) from the solution passages, caverns, and cleav-
age planes of sedimentary rocks such as limestone, slate, and
shale; (c) from the fractures and fssures of igneous rocks;
and (d) from combinations of these unconsolidated and con-
solidated geological formations. Groundwater sources, too,
have an intake or catchment area, but the catch, or recharge,
is by infltration into soil openings rather than by runoff over
its surface. The intake area may be nearby or a considerable
distance away, especially when fow is confned within a
water-bearing stratum or aquifer (from Latin aqua, “water,”
and ferre, “to bear”) underlying an impervious stratum or
aquiclude (from Latin aqua, “water,” and cludere, “to shut”
or “to close out”).

EXAMPLE 1.2 ESTIMATES OF YIELDS FROMWATERSHEDS AND STORAGE REQUIREMENTS

Certain rough estimates of the yield of surface watersheds and storage requirements are shown in Fig. 1.1. Rainfall is used as the
point of departure, merely to identify the dimensions of possible rainfall–runoff relationships. Determine

1. The yields from the watersheds,

2. The storage requirements,

3. The number of people who can be supported by a drainage area of 100 mi2 (259 km2) if there is adequate impoundage for
water storage, and

4. The number of people who can be supported by a drainage area of 100 mi2 (259 km2) if there is no impoundage for water
storage.

The following assumptions are made: (a) rainfall= 20 in.∕km2 annually = 19.6 cm∕km2, (b) a stream fow of about 1MGD/km2

(million gallons per day per square mile) or (1.547 ft3/s)/km2 [or 1.46MLD/km2 (million liters per day per square kilometer)] is a good
average for the well-watered sections of North America, (c) for 75% development (0.75 × 1 MGD∕km2 or 0.75 × 1.46 MLD∕km2),
about half a year’s supply must generally be stored. In semiarid regions storage of three times the mean annual stream fow is
not uncommon, that is, water is held over from wet years to supply demands during dry years, (d) average water consumption =
150 gpcd = 567.8 Lpcd, (e) for water supply by continuous draft, low water fows rather than average annual yields govern. In
well-watered sections of North America, these approximate 0.1 ft3/s or 64,600 gpd/km2 (or 28.32 L/s, or 0.094316 MLD/km2).
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Solution 1 (US Customary System):

1. The following conversion factors and approximations are being employed:

1 in. rainfall∕km2 = 17.378 MG

Hence, 20 in.∕km2 annually = 20 × 17.378 = 348 MG or 348∕365 = 0.952 MGD.

2. A stream fow of about 1 MGD/km2 is a good average for the well-watered sections of North America. Not all of it can be
adduced economically by storage.

For 75% development (0.75 MGD/km2, or 750,000 gpd/km2), about half a year’s supply must generally be stored. For
a catchment area of 100 km2, therefore

Storage = (0.75 MGD∕km2)(100 km2) × (0.5 × 365 days) = 13,688 MG = 13.5 BG (billion gallons) approximately.

In semiarid regions storage of three times the mean annual stream fow is not uncommon, that is, water is held over from wet
years to supply demands during dry years.

3. For an average consumption of 150 gpcd, the drainage area of 100 km2 and impoundage of 13.5 BG will supply a population
of 100 × 750,000∕150 = 500,000 persons.

4. For water supply by continuous draft, low water fows rather than average annual yields govern.
In well-watered sections of North America, these approximate 0.1 ft3/s or 64,600 gpd/km2.
A catchment area of 100 km2, therefore, can supply without storage

100 × 64,600∕150 = 43,000 people.

This is compared against 500,000 people in the presence of proper storage.

Solution 2 (SI System):

1. The following conversion factors and approximations are being employed:

1 cm∕km2 = 67.12 ML (million liters)

Hence, 19.6 cm/km2 annually = 19.6 × 67.12 = 1315.6 ML annually = 3.6 MLD.

2. A stream fow of about 1.46 MLD/km2 is a good average for the well-watered sections of North America. Not all of it can
be adduced economically by storage.

For 75% development (0.75 × 1.46 MLD∕km2), about half a year’s supply must generally be stored.
For a catchment area of 259 km2, therefore

Storage = 0.75(1.46 MLD∕km2)(259 km2)(0.5 × 365) = 51,758 ML = 51.758 BL (billion liters).

In semiarid regions storage of three times the mean annual stream fow is not uncommon, that is, water is held over from wet
years to supply demands during dry years.

3. For an average consumption of 567.8 Lpcd, the drainage area of 259 km2 and impoundage of 51.758 BL will supply a
population of

(0.75 × 1.46 MLD∕km2)(259 km2)(1,000,000 L∕ML)∕(567.8 Lpcd) = 500,000 persons.

4. For water supply by continuous draft, low water fows rather than average annual yields govern. In well-watered sections of
North America these approximate 28.32 L/s or 0.094316 MLD/km2.

A catchment area of 259 km2, therefore, can supply without storage

(259 km2)(0.094316 MLD∕km2)(1,000,000 L∕ML)∕(567.8 Lpcd) = 43,000 people.

This is compared against 500,000 people in the presence of proper storage.




