NAZIH K. SHAMMAS • LAWRENCE K. WANG

WATER ENGINEERING

Hydraulics, Distribution and Treatment

CourseSmart

Water Engineering

Water Engineering Hydraulics, Distribution and Treatment

First Edition

Nazih K. Shammas

University of Michigan, Ann Arbor, MI, USA (Ph.D.) N.K.Shammas@Gmail.com

Lawrence K. Wang

Rutgers University, New Brunswick, NJ, USA (Ph.D.) LawrenceKWang@Gmail.com

WILEY

Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey, USA. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for the readers situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Shammas, Nazih K.
Water engineering : hydraulics, distribution, and treatment / Nazih K. Shammas, Lawrence K. Wang. pages cm
Includes bibliographical references and index.
ISBN 978-0-470-39098-6 (hardback)
1. Waterworks. 2. Drinking water. I. Wang, Lawrence K. II. Title. III. Title: Water and wastewater engineering.
TD485.W36 2015 363.6'1–dc23

2014041853

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

PREFACE XVII

ACKNOWLEDGMENTS XIX

1

1 Introduction to Water Systems

1.1	Compo	nents of Water Systems	2
1.2	Require	d Capacity 2	
1.3	Sources	of Water Supply 3	
1.4	Rainwa	ter 4	
1.5	Surface	Water 5	
	1.5.1	Continuous Draft 5	
	1.5.2	Selective Draft 5	
	1.5.3	Impoundage 5	
1.6	Ground	water 6	
	1.6.1	Springs 8	
	1.6.2	Wells 8	
	1.6.3	Infiltration Galleries 8	
	1.6.4	Recharging Devices 9	
1.7	Purifica	tion Works 9	
1.8	Transm	ission Works 12	
1.9	Distribu	tion Works 12	
	1.9.1	High and Low Services	14
	1.9.2	Fire Supplies 14	
	1.9.3	Pressures 15	
	1.9.4	Capacity 15	
	1.9.5	Service to Premises 15	
1.10	Water S	ystems Management 15	
	1.10.1	Municipal Supplies 15	
	1.10.2	Individual Small Supplies	16
1.11	Individu	al Water Systems 17	
	Problem	ns/Questions 18	
	Referen	ces 19	

2 Water Sources: Surface Water 21

- 2.1 Sources of Surface Water 21
- 2.2 Safe Yield of Streams 24
- 2.3 Storage as a Function of Draft and Runoff 24
- 2.4 Design Storage 25
- 2.5 Loss by Evaporation, Seepage, and Silting 27
 - 2.5.1 Water-Surface Response 27
 - 2.5.2 Seepage 29
 - 2.5.3 Silting 29

2.6	Area and Volume of Reservoirs 31
2.7	Management of Catchment Areas 32
	2.7.1 Upland Areas 32
	2.7.2 Lowland Areas 32
	2.7.3 Quality Control 32
	2.7.4 Swamp Drainage 32
2.8	Reservoir Siting 33
2.9	Reservoir Management 33
	2.9.1 Quality Control 34
	2.9.2 Evaporation Control 34
2.10	Dams and Dikes 34
	2.10.1 Embankment Dams 34
	2.10.2 Masonry Dams 35
2.11	Spillways 36
2.12	Intakes 37
	2.12.1 River Intakes 37
	2.12.2 Lake and Reservoir Intakes 37
	2.12.3 Submerged and Exposed
	Intakes 38
	2.12.4 Intake Velocities and Depths 38
	2.12.5 Intake Conduits and Pumping
	Stations 38
2.13	Diversion Works 38
2.14	Collection of Rainwater 39
	Problems/Questions 41
	References 42

3 Water Sources: Groundwater 45

- 3.1 Porosity and Effective Porosity 45
- 3.2 Permeability 47
- 3.3 Groundwater Geology 47
- 3.4 Groundwater Situation in The United States 48
- 3.5 Types of Aquifers 48
- 3.6 Groundwater Movement 49
- 3.7 Darcy's Law 49
- 3.8 Aquifer Characteristics 50
- 3.9 Well Hydraulics 52
- 3.10 Nonsteady Radial Flow 52
 - 3.10.1 Confined Aquifers 52
 - 3.10.2 Semilogarithmic
 - Approximation 56
 - 3.10.3 Recovery Method 58
 - 3.10.4 Unconfined Aquifers 59
 - 3.10.5 Leaky Aquifers 59

3.11	Predictio	on of Drawdown 60
	3.11.1	Constant Discharge 60
	3.11.2	Variable Discharge 61
	3.11.3	Intermittent Discharge 61
3.12	Multiple	e-Well Systems 63
3.13	Aquifer	Boundaries 67
	3.13.1	Recharge Boundaries 67
	3.13.2	Location of Aquifer
		Boundaries 69
3.14	Characte	eristics of Wells 70
	3.14.1	Specific Capacity of a Well 70
	3.14.2	Partial Penetration 70
	3.14.3	Effective Well Radius 70
	3.14.4	Measurement of Well
		Characteristics 71
3.15	Yield of	a Well 71
0110	3.15.1	Maximum Available
	011011	Drawdown 71
	3 15 2	Specific Capacity–Drawdown
	5.15.2	Curve 72
	3 15 3	Maximum Vield 72
3 16	Well De	sign 73
3.17	Well Co	nstruction 74
5.17	3 17 1	Dug Wells 75
	3 17 2	Driven and letted Wells 75
	3 17 3	Bored Wells 75
	3 17 4	Drilled Wells 75
	3 17 5	Collector Wells 75
	3 17 6	Pumps 75
	3 17 7	Development 76
	3.17.8	Testing 76
	3 17 0	Sanitary Protection of Wells 76
	3 17 10	Maintenance 76
3 18	Evaluati	on of Aquifer Behavior 77
5.10	3 18 1	Hydrologic Equation 77
	3 18 2	Safe Vield of an Aquifer 77
	3 18 3	Water Budget (Hydrologic
	5.10.5	Budget) 77
3 19	Groundy	vater Quality Management 78
5.17	3 19 1	Biological Contamination 78
	3 19 2	Subsurface Disposal of
	5.17.2	Liquid Wastes 79
3 20	Groundy	vater Under the Direct Influence
5.20	of Surfa	ce Water 79
	3 20 1	GWUDI Determination:
	5.20.1	Source Screening Phase 79
	3 20 2	GWUDI Determination:
	5.20.2	Detailed Evaluation Phase 81
	3 20 3	Hydrogeologic Assessment 81
	3 20 4	Water Quality Assessment 87
	3.20.5	Microscopic Particulate
	5.20.5	Analyses 82
	Problem	s/Questions 84
	Referen	ces 85

4 Quantities of Water Demand 87

- 4.1 Design Period 874.2 Design Population
 - 2 Design Population 88
 - 4.2.1 Population Data 88
 - 4.2.2 Population Growth 88
 - 4.2.3 Short-Term Population Estimates 904.2.4 Long-Range Population Forecasts 91
 - 4.2.4 Long-Range Population Forecasts
 4.2.5 Simplified Method for Population Forecasts 92
 - 4.2.6 Population Distribution and Area Density 92
- 4.3 Water Consumption 92
 4.3.1 Domestic Consumption 93
 4.3.2 General Urban Water Demands
 - 4.3.3 Industrial Water Consumption 95

94

- 4.3.4Rural Water Consumption96
- 4.4 Variations or Patterns of Water Demand 96
 4.4.1 Domestic Variations 97
 4.4.2 Fire Demands 98
- 4.5 Demand and Drainage Loads of Buildings 104 Problems/Questions 106 References 106

5 Water Hydraulics, Transmission, and Appurtenances 109

5.1	Fluid Mechanics, Hydraulics, and Water		
	Transmission 109		
	5.1.1 Fluid Mechanics and Hydraulics 109		
	5.1.2 Transmission Systems 120		
5.2	Fluid Transport 121		
	5.2.1 Rational Equation for Surface		
	Resistance 121		
	5.2.2 Exponential Equation for Surface		
	Resistance 134		
	5.2.3 Form Resistance 145		
	5.2.4 Hydraulic Transients 152		
5.3	Capacity and Size of Conduits 152		
5.4	Multiple Lines 154		
5.5	Cross-Sections 155		
5.6	Structural Requirements 155		
5.7	Location 156		
	5.7.1 Line and Grade 156		
	5.7.2 Vertical and Horizontal Curves 157		
	5.7.3 Depth of Cover 157		
5.8	Materials of Construction 159		
	5.8.1 Carrying Capacity 159		
	5.8.2 Strength 159		
	5.8.3 Durability 160		
	5.8.4 Transportation 160		
	5.8.5 Safety 160		
	-		

	5.8.6	Maintenance 160
	5.8.7	Leakage 160
5.9	Appurte	nances 160
	5.9.1	Gate Valves 160
	5.9.2	Blowoffs 162
	5.9.3	Air Valves 162
	5.9.4	Check Valves 162
	5.9.5	Pressure-Reducing Valves 162
	5.9.6	Pressure-Sustaining Valves 163
	5.9.7	Pressure Breaker Valves 163
	5.9.8	Flow Control Valves 163
	5.9.9	Throttle Control Valves 163
	5.9.10	Manholes 163
	5.9.11	Insulation Joints 163
	5.9.12	Expansion Joints 163
	5.9.13	Anchorages 163
	5.9.14	Other Appurtenances 163
5.10	Addition	nal Hydraulics Topics 164
	5.10.1	Measurement of Fluid Flow
		and Hydraulic Coefficients 164
	5.10.2	Forces Developed by Moving
		Fluids 166
	5.10.3	Impulse-Momentum
		Principles 169
	5.10.4	Drag and Lift Forces 171
	Problem	s/Questions 172
	Referen	ces 178

6 Water Distribution Systems: Components, Design, and Operation 181

6.1	Distribu	tion Systems 181
	6.1.1	One- and Two-Directional
		Flow 181
	6.1.2	Distribution Patterns 181
	6.1.3	Pipe Grids 181
	6.1.4	High and Low Services 181
	6.1.5	Service to Premises 182
6.2	System	Components 183
6.3	System	Capacity 185
6.4	System	Pressure 185
6.5	Field Pe	rformance of Existing Systems 186
6.6	Office S	tudies of Pipe Networks 187
	6.6.1	Sectioning 187
	6.6.2	Relaxation (Hardy Cross) 190
	6.6.3	Pipe Equivalence 194
	6.6.4	Computer Programming 197
6.7	Industria	al Water Systems 197
6.8	Manage	ment, Operation, and
	Mainten	ance of Distribution Systems 197
	6.8.1	General Maintenance Person
		Asphyxiated While Attempting
		to Repair Water Leak 198

	6.8.2	Plumber Repairing a Water	
		Line Killed When Struck by a	
		Backhoe Bucket 199	
	6.8.3	Welder Killed Following a	
		100 ft (30 m) Fall from a Water	
		Tower 201	
6.9	Practica	al Design and Analysis of Water	
	Distribu	ation Systems 202	
	6.9.1	Minimum Design Period	
		Requirements 202	
	6.9.2	Water Pressure Requirements	202
	6.9.3	Minimum Size Requirements	202
	6.9.4	Velocity Requirements 203	
	6.9.5	Pipes and Valves Spacing	
		Requirements 203	
	6.9.6	Hydrant Spacing, Location,	
		and Fire Flow Requirements	203
	6.9.7	Air Relief Valve Requirements	203
	6.9.8	Depth of Cover Requirements	203
	6.9.9	Separation of Water Mains	
		from Sources of	
		Contamination 203	
	6.9.10	Head Loss of Water System	
		Fittings 204	
	Problem	ns/Questions 205	
	Referen	ices 210	

7 Water Distribution Systems: Modeling and Computer Applications 213

7.1	Waterge	ems Software 213
7.2	Water D	Demand Patterns 213
7.3	Energy	Losses and Gains 214
7.4	Pipe Ne	etworks 215
	7.4.1	Conservation of Mass 215
	7.4.2	Conservation of Energy 215
7.5	Networ	k Analysis 216
	7.5.1	Steady-State Network
		Hydraulics 216
	7.5.2	Extended-Period Simulation 216
7.6	Water Q	Quality Modeling 216
	7.6.1	Age Modeling 216
	7.6.2	Trace Modeling 217
	7.6.3	Constituents Modeling 217
	7.6.4	Initial Conditions 217
	7.6.5	Numerical Methods 217
	7.6.6	Discrete Volume Method 217
	7.6.7	Time-Driven Method 218
7.7	Automa	tted Optimization 218
	7.7.1	Model Calibration 218
	7.7.2	System Design 219

7.8 Practical Applications of Computer-Aided Water Supply System Analysis 232 Problems/Questions 233 References 240

8 Pumping, Storage, and Dual Water **Systems** 241

- 8.1 **Pumps and Pumping Stations** 241 **Pump Characteristics** 8.2 241
 - 8.2.1 Power Requirements and Efficiencies of Pumps 244 8.2.2 Cavitation 245 8.2.3 Performance Characteristics 246
- 8.3 Service Storage 248
 - 8.3.1 Equalizing, or Operating, Storage 248
 - 8.3.2 Fire Reserve 249
 - 8.3.3 **Emergency Reserve** 249
- **Total Storage** 249 8.3.4
- 8.4 Location of Storage 251
- Elevation of Storage 8.5 251
- Types of Distributing Reservoirs 251 8.6 257
- 8.7 **Dual Water Supply Systems**
 - Background 8.7.1 258
 - 8.7.2 The Nature of the Problems with Drinking Water Quality 258
 - 8.7.3 The Pipes in the Distribution Systems 258
 - 8.7.4 Biofilms and the Problems They 259 Cause
 - The Proposed System 259 8.7.5
- 8.8 Raw Water Intake Structures and Raw Water Pumping Wells 260 Problems/Questions 262 References 266

Cross-Connection Control 267

- 9.1 Introduction 267
- 9.2 Public Health Significance of
 - **Cross-Connections** 268
 - 9.2.1 Human Blood in the Water System 268
 - 9.2.2 Sodium Hydroxide in the Water Main 268
 - Heating System Antifreeze in 9.2.3 Potable Water 268
 - 9.2.4 Salt Water Pumped into Freshwater Line 269
 - 9.2.5 Paraquat in the Water System 269

9.2.6 Propane Gas in the Water Mains 270 9.2.7 Chlordane and Heptachlor at a Housing Authority 271 9.2.8 Boiler Water Entered High School Drinking Water 271 Car Wash Water in the Street 9.2.9 Water Main 272 9.2.10 Health Problems Due to Cross-Connection in an Office Building 275 Theory of Backflow and Backsiphonage 276 9.3.1 Water Pressure 276 9.3.2 Siphon Theory 277 9.3.3 Backflow 280 Methods and Devices for the Prevention of Backflow and Backsiphonage 280 9.4.1 Air Gap 281 9.4.2 **Barometric Loops** 281 9.4.3 Atmospheric Vacuum Breakers 281 9.4.4 Hose Bib Vacuum Breakers 282 9.4.5 Pressure Vacuum Breakers 283 9.4.6 Double Check Valves with an Intermediate Atmospheric Vent 283 9.4.7 **Double Check Valves** 284 9.4.8 **Double Check Detector** Check 284 9.4.9 **Residential Dual Check** 285 **Reduced Pressure Principle Backflow** Preventer 285 Administration of a Cross-Connection Control Program 289 289 9.6.1 Responsibility 9.6.2 Dedicated Line 290 9.6.3 Method of Action 290 Pressure and Leakage Tests of Water Mains 291 9.7.1 Preparation for Pressure and Leakage Tests 291 9.7.2 292 Pressure and Leakage Tests **Problems/Ouestions** 293 References 295

9.3

9.4

9.5

9.6

9.7

10 Water Quality Characteristics and **Drinking Water Standards** 297

- 10.1 Objectives of Water-Quality Management 297
- Natural Available Water Resources 297 10.2

Water Treatment29810.4Physical Characteristics and Constituents30010.4.1Color30010.4.2Turbidity and Particle Count30010.4.3Taste and Odor30110.4.4Temperature30110.4.5Foamability30110.5Chemical Characteristics and Constituents30110.5Chemical Characteristics and Constituents30110.5.1Metals30210.5.2Anions30310.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6Biological Characteristics and Constituents30710.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31010.6.8Reduction of Infections by Water Quality Standa	10.3	Public He	ealth Issues and Drinking
10.4Physical Characteristics and Constituents 300 10.4.1Color 300 10.4.210.4.2Turbidity and Particle Count 30010.4.310.4.3Taste and Odor 301 10.4.4Temperature 301 10.4.510.4.5Foamability 30110.5Chemical Characteristics and Constituents 301 10.5.1Metals 302 10.5.210.5.1Metals 302 10.5.2Anions 303 10.5.310.5.1Metals 302 10.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate 304 10.5.510.5.6Dissolved Solids and Conductivity 3050.5.610.5.7Pesticides 305 10.5.7Pesticides 305 10.5.910.5.8PCBs, CFCs, and Dioxin 305 10.5.9Asbestos 306 10.5.1010.5.10Residual Disinfectants 306 10.5.11Disinfectant 306 10.5.1210.6.1Bacteria 307 10.6.1Bacteria 307 10.6.210.6.2Protozoa (Including Cryptosporidium and Giardia lamblia) 307 10.6.3Worms 308 10.6.410.6.4Viruses, Fungi, and Algae 308 10.6.5Coliform Indicator Parameter 308 10.6.6Heterotrophic Plate Count (HPC) 309 10.6.710.6.7Infections from Water-Related Sources 310 10.6.8Reduction of Infections by Water Quality Management 31010.7Radiological Characteristics and Constituents 310Onstituents 311 10.910.9Industrial Water Quality Standards 311 10.9Industrial Water S217 10.1110.12Irrigation Waters 319 10.13Quality of Water from Various Sources 31910.14 <td></td> <td>Water Tre</td> <td>eatment 298</td>		Water Tre	eatment 298
Constituents30010.4.1Color30010.4.2Turbidity and Particle Count30010.4.3Taste and Odor30110.4.4Temperature30110.4.5Foamability30110.5Chemical Characteristics and Constituents30210.5.1Metals30210.5.2Anions30310.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30510.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.5.12Other Organic and Giardia lamblia)30710.6.1Bacteria30710.6.2Protozoa (Including Cryptosporidium and Giardia lamblia)30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31010.8Drinki	10.4	Physical	Characteristics and
10.4.1Color30010.4.2Turbidity and Particle Count30010.4.3Taste and Odor30110.4.4Temperature30110.4.5Foamability30110.5Chemical Characteristics and Constituents30210.5.1Metals30210.5.2Anions30310.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30510.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6Biological Characteristics and Constituents30710.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents3131		Constitue	ents 300
10.4.2Turbidity and Particle Count 30010.4.3Taste and Odor 30110.4.4Temperature 30110.4.5Foamability 30110.5Chemical Characteristics and Constituents 30110.5.1Metals 30210.5.2Anions 30310.5.3Alkalinity and pH 30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate 30410.5.5Total Dissolved Solids and Conductivity 30510.5.6Dissolved Oxygen 30510.5.7Pesticides 30510.5.8PCBs, CFCs, and Dioxin 30510.5.9Asbestos 30610.5.10Residual Disinfectants 30610.5.11Disinfectant By-products 30610.5.12Other Organic and Inorganic Contaminants 30610.6Biological Characteristics and Constituents 30710.6.1Bacteria 30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 30710.6.3Worms 30810.6.4Viruses, Fungi, and Algae 30810.6.5Coliform Indicator Parameter 30810.6.6Heterotrophic Plate Count (HPC) 30910.6.7Infections from Water-Related Sources 31010.6.8Reduction of Infections by Water Quality Management 31010.7Radiological Characteristics and Constituents 31010.7Radiological Characteristics and Constituents 31010.8Drinking Water Quality Standards 31310.10Bathing Waters 31710.11Fishing and Shellfish Waters 31710		10.4.1	Color 300
Count 300 10.4.3 Taste and Odor 301 10.4.4 Temperature 301 10.4.5 Foamability 301 10.5 Chemical Characteristics and Constituents 301 10.5.1 Metals 302 10.5.2 Anions 303 10.5.3 Alkalinity and pH 304 10.5.4 Hardness, Calcium and Magnesium, Carbonate and Bicarbonate 304 10.5.5 Total Dissolved Solids and Conductivity 305 10.5.6 Dissolved Oxygen 305 10.5.7 Pesticides 305 10.5.8 PCBs, CFCs, and Dioxin 305 10.5.9 Asbestos 306 10.5.10 Residual Disinfectants 306 10.5.11 Disinfectant By-products 306 10.5.12 Other Organic and Inorganic Contaminants 306 10.6.1 Bacteria 307 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320		10.4.2	Turbidity and Particle
10.4.3Taste and Odor30110.4.4Temperature30110.4.5Foamability30110.5Chemical Characteristics and Constituents30210.5.1Metals30210.5.2Anions30310.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30510.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31310.9Industrial Water Quality Standards31110.9Industrial Water Quality Standards313 </td <td></td> <td></td> <td>Count 300</td>			Count 300
10.4.4Temperature30110.4.5Foamability30110.5Chemical Characteristics and Constituents30110.5.1Metals30210.5.2Anions30310.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30510.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31310.9Industrial Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of		10.4.3	Taste and Odor 301
10.4.5Foamability30110.5Chemical Characteristics and Constituents30110.5.1Metals30210.5.2Anions30310.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30510.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6Biological Characteristics and Constituents30710.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfi		10.4.4	Temperature 301
10.5Chemical Characteristics and Constituents301 10.5.1Metals302 10.5.210.5.1Metals303 10.5.3Alkalinity and pH304 10.5.410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate304 10.5.510.5.5Total Dissolved Solids and Conductivity305 10.5.610.5.6Dissolved Oxygen305 10.5.710.5.7Pesticides305 10.5.910.5.8PCBs, CFCs, and Dioxin305 10.5.910.5.10Residual Disinfectants306 10.5.1110.5.11Disinfectant By-products306 10.5.1210.5.12Other Organic Contaminants30610.6.1Bacteria307 10.6.110.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)307 307 307 308 30610.6.4Viruses, Fungi, and Algae308 308 306.610.6.5Coliform Indicator Parameter310 309 30710.6.6Heterotrophic Plate Count (HPC)309 309 306.710.6.7Infections from Water-Related Sources310 31010.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Management311 31010.9Industrial Water Quality Standards311 31310.9Industrial Water Site 31731710.11Fishing and Shellfish Waters317 31710.12Irrigation Waters319 31010.13Quality of Water from Variou		10.4.5	Foamability 301
Constituents30110.5.1Metals30210.5.2Anions30310.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30510.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter31010.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Water from Various Sources31910.13Quality of Water from Various Sources319<	10.5	Chemical	Characteristics and
10.5.1Metals 302 10.5.2Anions 303 10.5.3Alkalinity and pH 304 10.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate 304 10.5.5Total Dissolved Solids and Conductivity 305 10.5.6Dissolved Oxygen 305 10.5.7Pesticides 305 10.5.8PCBs, CFCs, and Dioxin 305 10.5.9Asbestos 306 10.5.10Residual Disinfectants 306 10.5.11Disinfectant By-products 306 10.5.12Other Organic and Inorganic Contaminants 306 10.6Biological Characteristics and Constituents 307 10.6.1Bacteria 307 10.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3Worms 308 10.6.4Viruses, Fungi, and Algae 308 10.6.5Coliform Indicator Parameter 308 10.6.6Heterotrophic Plate Count (HPC) 309 10.6.7Infections from Water-Related Sources 310 10.6.8Reduction of Infections by Water Quality Management 310 10.7Radiological Characteristics and Constituents 311 10.9Industrial Water Quality Standards 313 10.10Bathing Waters 317 10.11Fishing and Shellfish Waters 317 10.12Irrigation Waters 319 10.13Quality of Water from Various Sources 31		Constitue	ents 301
10.5.2Anions30310.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30510.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6Biological Characteristics and Constituents30710.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water320		10.5.1	Metals 302
10.5.3Alkalinity and pH30410.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate30410.5.5Total Dissolved Solids and Conductivity30510.5.6Dissolved Oxygen30510.5.7Pesticides30510.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6Biological Characteristics and Constituents30710.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31010.7Radiological Characteristics and Constituents31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water320		10.5.2	Anions 303
10.5.4Hardness, Calcium and Magnesium, Carbonate and Bicarbonate 30410.5.5Total Dissolved Solids and Conductivity 30510.5.6Dissolved Oxygen 30510.5.7Pesticides 30510.5.8PCBs, CFCs, and Dioxin 30510.5.9Asbestos 30610.5.10Residual Disinfectants 30610.5.11Disinfectant By-products 30610.5.12Other Organic and Inorganic Contaminants 30610.6Biological Characteristics and Constituents 30710.6.1Bacteria 30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 30710.6.3Worms 30810.6.4Viruses, Fungi, and Algae 30810.6.5Coliform Indicator Parameter 30810.6.6Heterotrophic Plate Count (HPC) 30910.6.7Infections from Water-Related Sources 31010.6.8Reduction of Infections by Water Quality Management 31010.7Radiological Characteristics and Constituents 31010.8Drinking Water Quality Standards 31110.9Industrial Water Quality Standards 31310.10Bathing Waters 31710.11Fishing and Shellfish Waters 31710.12Irrigation Waters 31910.13Quality of Water from Various Sources 31910.14Good Quality Water 32010.15Self-Purification and Storage 320		10.5.3	Alkalinity and pH 304
Magnesium, Carbonate and Bicarbonate 30410.5.5Total Dissolved Solids and Conductivity 30510.5.6Dissolved Oxygen 30510.5.7Pesticides 30510.5.8PCBs, CFCs, and Dioxin 30510.5.9Asbestos 30610.5.10Residual Disinfectants 30610.5.11Disinfectant By-products 30610.5.12Other Organic and Inorganic Contaminants 30610.6Biological Characteristics and Constituents 30710.6.1Bacteria 30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 30710.6.3Worms 30810.6.4Viruses, Fungi, and Algae 30810.6.5Coliform Indicator Parameter 30810.6.6Heterotrophic Plate Count (HPC) 30910.6.7Infections from Water-Related Sources 31010.6.8Reduction of Infections by Water Quality Management 31010.7Radiological Characteristics and Constituents 31010.8Drinking Water Quality Standards 31110.9Industrial Water Quality Standards 31310.10Bathing Waters 31710.11Fishing and Shellfish Waters 31710.12Irrigation Waters 31910.13Quality of Water from Various Sources 31910.14Good Quality Water 32010.15Self-Purification and Storage 320		10.5.4	Hardness, Calcium and
Bicarbonate 304 10.5.5Total Dissolved Solids and Conductivity 305 10.5.6Dissolved Oxygen 305 10.5.7Pesticides 305 10.5.8PCBs, CFCs, and Dioxin 305 10.5.9Asbestos 306 10.5.10Residual Disinfectants 306 10.5.11Disinfectant By-products 306 10.5.12Other Organic and Inorganic Contaminants 306 10.6Biological Characteristics and Constituents 307 10.6.1Bacteria 307 10.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3Worms 308 10.6.4Viruses, Fungi, and Algae 308 10.6.5Coliform Indicator Parameter 308 10.6.6Heterotrophic Plate Count (HPC) 309 10.6.7Infections from Water-Related Sources 310 10.6.8Reduction of Infections by Water Quality Management 310 10.7Radiological Characteristics and Constituents 310 10.8Drinking Water Quality Standards 311 10.9Industrial Water Quality Standards 313 10.10Bathing Waters 317 10.11Fishing and Shellfish Waters 317 10.12Irrigation Waters 319 10.13Quality of Water from Various Sources 319 10.14Good Quality Water 320			Magnesium, Carbonate and
 10.5.5 Total Dissolved Solids and Conductivity 305 10.5.6 Dissolved Oxygen 305 10.5.7 Pesticides 305 10.5.8 PCBs, CFCs, and Dioxin 305 10.5.9 Asbestos 306 10.5.10 Residual Disinfectants 306 10.5.11 Disinfectant By-products 306 10.5.12 Other Organic and Inorganic Contaminants 306 10.6 Biological Characteristics and Constituents 307 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 			Bicarbonate 304
Conductivity 305 10.5.6 Dissolved Oxygen 305 10.5.7 Pesticides 305 10.5.8 PCBs, CFCs, and Dioxin 305 10.5.9 Asbestos 306 10.5.10 Residual Disinfectants 306 10.5.11 Disinfectant By-products 306 10.5.12 Other Organic and Inorganic Contaminants 306 10.6 Biological Characteristics and Constituents 307 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320		10.5.5	Total Dissolved Solids and
10.5.6Dissolved Oxygen 305 10.5.7Pesticides 305 10.5.8PCBs, CFCs, and Dioxin 305 10.5.9Asbestos 306 10.5.10Residual Disinfectants 306 10.5.11Disinfectant By-products 306 10.5.12Other Organic and Inorganic Contaminants 306 10.6Biological Characteristics and Constituents 307 10.6.1Bacteria 307 10.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3Worms 308 10.6.4Viruses, Fungi, and Algae 308 10.6.5Coliform Indicator Parameter 308 10.6.6Heterotrophic Plate Count (HPC) 309 10.6.7Infections from Water-Related Sources 310 10.6.8Reduction of Infections by Water Quality Management 311 10.9Industrial Water Quality Standards 311 10.9Industrial Water Quality Standards 313 10.10Bathing Waters 317 10.11Fishing and Shellfish Waters 317 10.12Irrigation Waters 319 10.13Quality of Water from Various Sources 310 10.14Good Quality Water 320			Conductivity 305
10.5.7Pesticides 305 10.5.8PCBs, CFCs, and Dioxin 305 10.5.9Asbestos 306 10.5.10Residual Disinfectants 306 10.5.11Disinfectant By-products 306 10.5.12Other Organic and Inorganic Contaminants 306 10.6Biological Characteristics and Constituents 307 10.6.1Bacteria 307 10.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3Worms 308 10.6.4Viruses, Fungi, and Algae 308 10.6.5Coliform Indicator Parameter 308 10.6.6Heterotrophic Plate Count (HPC) 309 10.6.7Infections from Water-Related Sources 310 10.6.8Reduction of Infections by Water Quality Management 311 10.9Industrial Water Quality Standards 311 10.9Industrial Water Quality Standards 313 10.10Bathing Waters 317 10.11Fishing and Shellfish Waters 317 10.12Irrigation Waters 319 10.13Quality of Water from Various Sources 310 10.14Good Quality Water 320		10.5.6	Dissolved Oxygen 305
10.5.8PCBs, CFCs, and Dioxin30510.5.9Asbestos30610.5.10Residual Disinfectants30610.5.11Disinfectant By-products30610.5.12Other Organic and Inorganic Contaminants30610.6Biological Characteristics and Constituents30710.6.1Bacteria30710.6.2Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31110.9Industrial Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water320		10.5.7	Pesticides 305
10.5.9Asbestos 306 $10.5.10$ Residual Disinfectants 306 $10.5.11$ Disinfectant By-products 306 $10.5.12$ Other Organic and Inorganic Contaminants 306 10.6 Biological Characteristics and Constituents 307 $10.6.1$ Bacteria 307 $10.6.2$ Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 $10.6.2$ Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 $10.6.3$ Worms 308 $10.6.4$ Viruses, Fungi, and Algae 308 $10.6.5$ Coliform Indicator Parameter 308 $10.6.6$ Heterotrophic Plate Count (HPC) 309 $10.6.7$ Infections from Water-Related Sources 310 $10.6.8$ Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.14 Good Quality Water 320		10.5.8	PCBs, CFCs, and Dioxin 305
10.5.10Residual Disinfectants 306 $10.5.11$ Disinfectant By-products 306 $10.5.12$ Other Organic and Inorganic Contaminants 306 10.6 Biological Characteristics and Constituents 307 $10.6.1$ Bacteria 307 $10.6.1$ Bacteria 307 $10.6.2$ Protozoa (Including Cryptosporidium and Giardia lamblia) 307 $10.6.3$ Worms 308 $10.6.4$ Viruses, Fungi, and Algae 308 $10.6.5$ Coliform Indicator Parameter 308 $10.6.6$ Heterotrophic Plate Count (HPC) 309 $10.6.7$ Infections from 		10.5.9	Asbestos 306
 10.5.11 Disinfectant By-products 306 10.5.12 Other Organic and Inorganic Contaminants 306 10.6 Biological Characteristics and Constituents 307 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		10.5.10	Residual Disinfectants 306
 10.5.12 Other Organic and Inorganic Contaminants 306 10.6 Biological Characteristics and Constituents 307 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		10.5.11	Disinfectant By-products 306
Inorganic Contaminants 306 10.6 Biological Characteristics and Constituents 307 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320		10.5.12	Other Organic and
 10.6 Biological Characteristics and Constituents 307 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 			Inorganic Contaminants 306
Constituents 307 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320	10.6	Biologica	al Characteristics and
 10.6.1 Bacteria 307 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		Constitue	ents 307
 10.6.2 Protozoa (Including <i>Cryptosporidium</i> and <i>Giardia lamblia</i>) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		10.6.1	Bacteria 307
Cryptosporidium and Giardia lamblia) 307 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320		10.6.2	Protozoa (Including
Giardia lamblia)30710.6.3Worms30810.6.4Viruses, Fungi, and Algae30810.6.5Coliform Indicator Parameter30810.6.6Heterotrophic Plate Count (HPC)30910.6.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water32010.15Self-Purification and Storage320			<i>Cryptosporidium</i> and
 10.6.3 Worms 308 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		10.60	Giardia lamblia) 307
 10.6.4 Viruses, Fungi, and Algae 308 10.6.5 Coliform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		10.6.3	Worms 308
 10.6.5 Conform Indicator Parameter 308 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		10.6.4	Viruses, Fungi, and Algae 308
Parameter30810.6.6Heterotrophic Plate Count (HPC)(HPC)30910.6.7Infections from Water-Related Sources10.6.8Reduction of Infections by Water Quality Management10.7Radiological Characteristics and Constituents10.7Radiological Characteristics and Constituents10.8Drinking Water Quality Standards10.9Industrial Water Quality Standards10.10Bathing Waters31710.1110.12Irrigation Waters31910.13Quality of Water from Various SourcesSources31910.14Good Quality Water320		10.6.5	Coliform Indicator
 10.6.6 Heterotrophic Plate Count (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		10.6.6	Parameter 308
 (HPC) 309 10.6.7 Infections from Water-Related Sources 310 10.6.8 Reduction of Infections by Water Quality Management 310 10.7 Radiological Characteristics and Constituents 310 10.8 Drinking Water Quality Standards 311 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 		10.6.6	Heterotrophic Plate Count
10.0.7Infections from Water-Related Sources31010.6.8Reduction of Infections by Water Quality Management31010.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water32010.15Self-Purification and Storage320		1067	(HPC) 309
Water-Related Sources 51010.6.8Reduction of Infections by Water Quality Management 31010.7Radiological Characteristics and Constituents 31010.8Drinking Water Quality Standards 31110.9Industrial Water Quality Standards 31310.10Bathing Waters 31710.11Fishing and Shellfish Waters 31710.12Irrigation Waters 31910.13Quality of Water from Various Sources 31910.14Good Quality Water 32010.15Self-Purification and Storage 320		10.0.7	Water Palated Sources 210
Water Quality Management31010.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water32010.15Self-Purification and Storage320		1068	Peduction of Infections by
Management31010.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water32010.15Self-Purification and Storage320		10.0.8	Water Quality
10.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water32010.15Self-Purification and Storage320			Management 310
10.7Radiological Characteristics and Constituents31010.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water32010.15Self-Purification and Storage320	10.7	Radiolog	ical Characteristics and
10.8Drinking Water Quality Standards31110.9Industrial Water Quality Standards31310.10Bathing Waters31710.11Fishing and Shellfish Waters31710.12Irrigation Waters31910.13Quality of Water from Various Sources31910.14Good Quality Water32010.15Self-Purification and Storage320	10.7	Constitue	ents 310
 10.0 Drinking water Quality Standards 511 10.9 Industrial Water Quality Standards 313 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 	10.8	Drinking	Water Quality Standards 311
 10.10 Bathing Waters 317 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 	10.9	Industrial	Water Quality Standards 313
 10.11 Fishing and Shellfish Waters 317 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 	10.10	Bathing V	Waters 317
 10.12 Irrigation Waters 319 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 	10.11	Fishing a	nd Shellfish Waters 317
 10.13 Quality of Water from Various Sources 319 10.14 Good Quality Water 320 10.15 Self-Purification and Storage 320 	10.12	Irrigation	Waters 319
Sources31910.14Good Quality Water32010.15Self-Purification and Storage320	10.13	Quality o	f Water from Various
10.14Good Quality Water32010.15Self-Purification and Storage320	-	Sources	319
10.15 Self-Purification and Storage 320	10.14	Good Qu	ality Water 320
=	10.15	Self-Puri	fication and Storage 320

10.16	Objectives of Water Examination	321
10.17	Methods of Examination 321	
10.18	Standard Tests 322	
10.19	Expression of Analytical Results	322
10.20	Tapping a Source of Water322	
	Problems/Questions 323	
	References 323	

11 Water Treatment Systems 325

11.1	Purpose of Water Treatment 325
11.2	Treatment of Raw Water 325
11.3	Unit Operations and Unit Processes 328
11.4	Gas Transfer 330
11.5	Ion Transfer 330
	11.5.1 Chemical Coagulation 330
	11.5.2 Chemical Precipitation 331
	11.5.3 Ion Exchange 331
	11.5.4 Adsorption 332
11.6	Solute Stabilization 333
11.7	Solids Transfer 333
	11.7.1 Straining 333
	11.7.2 Sedimentation 333
	11.7.3 Flotation 334
	11.7.4 Filtration 337
11.8	Nutrient or Molecular Transfer and
	Interfacial Contact 338
11.9	Disinfection 339
11.10	Miscellaneous Operations/Processes 340
11.11	Coordination of Unit
	Operations/Processes 340
11.12	Selection of Water Treatment
	Technologies 341
	11.12.1 Treated Water
	Requirements and Influent
	Characteristics 341
	11.12.2 Existing System
	Configuration 341
	11.12.3 Water Treatment Costs 341
	11.12.4 Operation Requirements 341
	11.12.5 Pretreatment and
	Posttreatment Processes 341
	11.12.6 Waste Management 342
	11.12.7 Future Service Area Needs 342
11.13	Control of Turbidity, Color, and
	Biological Contamination 342
11.14	Organic Contaminant Removal 343
11.15	Inorganic Contaminant Removal and
	Control 345
	11.15.1 Corrosion Controls 345
	11.15.2 Inorganic Contaminant
	Removal 345
	11.15.3 Radionuclides Removal
	and Risk Control 345

11.16 Water Renovation 348 11.17 **Treatment Kinetics** 350 11.18 Monitoring Water Quality 351 11.19 Distribution to Customers 352 11.20 Glossary of Water Treatment Systems 352 Problems/Questions 359 References 360

12 Chemicals Feeding, Mixing, and Flocculation 363

12.1	Introduction 363			
12.2	Handling, Storing, and Feeding			
	Chemicals 363			
	12.2.1 Points of Chemical			
	Addition 364			
	12.2.2 Chemical Metering			
	Equipment 364			
12.3	Rapid Mixing 367			
	12.3.1 Mechanical Mixers 369			
	12.3.2 In-Line Static Mixers 370			
	12.3.3 In-Line Mechanical			
	Blenders 371			
	12.3.4 Jet Injection Blending 371			
	12.3.5 Coagulant Diffusers 372			
	12.3.6 Hydraulic Jumps 372			
12.4	Rapid Mixing and Slow Flocculation 37	2		
12.5	Flocculation 373			
12.6	Mixing and Stirring Devices 373	lixing and Stirring Devices 373		
	12.6.1 Baffled Channels 373			
	12.6.2 Pneumatic Mixing and			
	Stirring 374			
	12.6.3 Mechanical Mixing and			
	Stirring 374			
12.7	Flocculator Performance 391			
	12.7.1 Mixing 391			
	12.7.2 Flocculator Inlet and Outlet			
	Structures 392			
	12.7.3 Improving Basin Circulation			
	with Baffles 392			
12.8	Costs 393			
	Problems/Questions 394			
	References 395			
Aerati	on, Gas Transfer, and			
Oxida	tion 397			

13.1	Sources	of Gases	in Water	397

13

- 13.2 Objectives of Gas Transfer 397
- 13.3 Absorption and Desorption of Gases 398

13.4	Rates of Gas Absorption and
	Desorption 400
13.5	Types of Aerators 402
	13.5.1 Gravity Aerators 402
	13.5.2 Spray Aerators 402
	13.5.3 Air Diffusers 402
	13.5.4 Mechanical Aerators 404
13.6	Factors Governing Gas Transfer 405
13.7	Design of Gravity Aerators 405
13.8	Design of Fixed-Spray Aerators 406
13.9	Design of Movable-Spray Aerators 406
13.10	Design of Injection Aerators 407
13.11	Mechanical Aerators 408
13.12	Oxidation for Removal of Dissolved
	Iron and Manganese 408
	13.12.1 Solubility of Fe and Mn 408
	13.12.2 Redox Reactions of Fe and
	Mn 409
	13.12.3 Precipitation of Fe and Mn 409
	13.12.4 Kinetics of Oxygenation 409
	13.12.5 Engineering Management
	of Oxidative Removal of
	Iron and Manganese 409
13.13	Removal of Specific Gases 411
	13.13.1 Methane 411
	13.13.2 Carbon Dioxide 411
	13.13.3 Hydrogen Sulfide 411
13.14	Removal of Odors and Tastes 414
	Problems/Questions 414
	References 415

14 Coagulation 417

14.1	Introduct	tion 417
14.2	The Coll	oidal State 417
	14.2.1	Electrokinetic Properties of
		Colloids 417
	14.2.2	Hydration 418
	14.2.3	Tyndall Effect 418
	14.2.4	Brownian Movement 418
	14.2.5	Filterability 418
14.3	Colloida	l Structure and Stability of
	Colloids	418
14.4	Destabili	zation of Colloids 421
	14.4.1	Double-Layer
		Compression 421
	14.4.2	Adsorption and Charge
		Neutralization 422
	14.4.3	Entrapment of Particles in
		Precipitate 422
	14.4.4	Adsorption and Bridging
		between Particles 422

14.5	Influence	cing Factors 423
	14.5.1	Colloid Concentration 423
	14.5.2	Alkalinity and pH 423
	14.5.3	Coagulant Dosage and pH 423
	14.5.4	Zeta Potential 424
	14.5.5	Affinity of Colloids for Water 424
	14.5.6	Anions in Solution 425
	14.5.7	Cations in Solution 425
	14.5.8	Temperature 425
14.6	Coagula	ants 425
	14.6.1	Aluminum Salts 426
	14.6.2	Iron Salts 427
	14.6.3	Sodium Aluminate 430
	14.6.4	Magnesium Coagulant 430
	14.6.5	Polymeric Inorganic Salts 430
	14.6.6	Organic Polymers 431
	14.6.7	Coagulant Aids 432
14.7	Coagula	ation Control 432
	14.7.1	Jar Test 433
	14.7.2	Zetameter 433
	14.7.3	Streaming Current Detector 434
	14.7.4	Colloid Titration for
		Polyelectrolyte Determination
		and Coagulation Control 434
	Problen	ns/Questions 435
	Special	Reference 436
	Referen	nces 436

15 Screening, Sedimentation, and Flotation 439

- 15.1 Treatment Objectives 439
- 15.2 Screening 439
- 15.3 Sedimentation 439
- 15.4 Types of Sedimentation 439

12.1	Types c	Seamentation 159
	15.4.1	Settling Velocities of Discrete
		Particles—Class 1
		Clarification 440
	15.4.2	Hindered Settling of Discrete
		Particles—Class 2
		Clarification 443
	15.4.3	Settling of Flocculent
		Suspensions—Zone Settling 445
	15.4.4	Compression Settling 446
15.5	Settling	g Basins 447
	15.5.1	Efficiency of Ideal Settling
		Basins 447
	15.5.2	Reduction in Settling
		Efficiency by Currents 448
	1553	Short-Circuiting and Basin

- 15.5.3Short-Circuiting and Basin
Stability15.5.4Scour of Bottom Deposits
- 15.5.4Scour of Bottom Deposits45015.5.5Elements of Tank Design451

15.6	Upflow Clarification 451		
15.7	General Dimensions of Settling		
	Tanks 455		
15.8	Sludge Removal 456		
15.9	Inlet Hydraulics 456		
15.10	Outlet Hydraulics 459		
15.11	Sedimentation Tank Loading,		
	Detention, And Performance 459		
	15.11.1 Sedimentation Tank		
	Performance 459		
	15.11.2 Regulations and Standards 460		
15.12	Shallow Depth Settlers 462		
	15.12.1 Theory of Shallow Depth		
	Settling 462		
	15.12.2 Tube Settlers 463		
	15.12.3 Lamella Separator 464		
15.13	Gravity Thickening of Sludge 464		
15.14	Natural Flotation 467		
15.15	Dissolved Air Flotation Process 468		
	15.15.1 Process Description 468		
	15.15.2 Process Configurations 468		
	15.15.3 Factors Affecting		
	Dissolved Air Flotation 469		
	15.15.4 Dissolved Air Flotation		
	Theory 469		
	15.15.5 Flotation Design,		
	Operation, and		
	Performance 474		
	15.15.6 Municipal Potable Water		
	Plants 475		
	Problems/Questions 480		
	References 482		

16 Conventional Filtration 485

16.1	Granular Water Filters 485
16.2	Granular Wastewater Filters 487
16.3	Granular Filtering Materials 488
	16.3.1 Grain Size and Size
	Distribution 488
	16.3.2 Grain Shape and Shape
	Variation 489
16.4	Preparation of Filter Sand 490
16.5	Hydraulics of Filtration 491
	16.5.1 Hydraulics of Stratified
	Beds 492
	16.5.2 Hydraulics of Unstratified
	Beds 493
16.6	Hydraulics of Fluidized Beds—Filter
	Backwashing 494
16.7	Removal of Impurities 497
16.8	Kinetics of Filtration 497

16.9	Filter Des	sign 498
	16.9.1	Bed Depth 498
	16.9.2	Underdrainage Systems 500
	16.9.3	Scour Intensification 503
	16.9.4	Washwater Troughs 503
	16.9.5	Filter and Conduit
		Dimensions 505
16.10	Filter Ap	purtenances and Rate
	Control	505
16.11	Length of	f Filter Run 506
16.12	Filter Tro	ubles 507
16.13	Plant Per	formance 508
	16.13.1	Bacterial Efficiency 508
	16.13.2	Removal of Color,
		Turbidity, and Iron 509
	16.13.3	Removal of Large
		Organisms 509
	16.13.4	Oxidation of Organic
		Matter 509
	Problems	/Questions 509
	Reference	es 510

17 Alternative and Membrane Filtration Technologies 513

17.1	Introducti	on of Filtration
	Technolog	gies 513
	17.1.1	Filtration Overview 513
	17.1.2	Filtration Applications 513
17.2	Direct Fil	tration 514
	17.2.1	Process Description 514
	17.2.2	System Performance 516
17.3	Slow San	d Filtration 516
	17.3.1	Process Description 516
	17.3.2	System Performance 516
	17.3.3	System Design
		Considerations 517
	17.3.4	Operation and
		Maintenance 518
17.4	Package I	Plant Filtration 518
	17.4.1	General Process
		Description 518
	17.4.2	Conventional Filtration
		Package Plants 519
	17.4.3	Tube-Type Clarifier
		Package Plants 519
	17.4.4	Adsorption Clarifier-Filter
		Package Plant 519
	17.4.5	Dissolved Air
		Flotation-Filtration
		Package Plant 520
	17.4.6	Operation and Maintenance
		of Package Plants 522

	17.4.7	General System Performance
		of Package Plants 522
17.5	Diatom	aceous Earth Filtration 524
	17.5.1	Process Description 524
	17.5.2	Operation and Maintenance 525
17.6	Cartridg	ge Filtration 526
	17.6.1	Cartridge Filtration
		Applications 526
	17.6.2	Operation and Maintenance
		of Cartridge Filtration 526
17.7	Membr	ane Filtration 527
	17.7.1	Process Description 527
	17.7.2	System Design
		Considerations 527
	17.7.3	Operation of Membrane
		Filtration 531
	17.7.4	Maintenance of Membrane
		Filtration Systems 537
	17.7.5	Membrane Filtration
		Applications 538
	17.7.6	System Performance of
		Membrane Filtration 539
	17.7.7	Potential Problems of
		Membrane Filtration 540
17.8	Selectir	ng the Appropriate Filtration
	Treatme	ent System 540
	17.8.1	Steps in an Evaluation 540
	17.8.2	Need for Pilot Studies 540
	17.8.3	Flocculation, Sedimentation,
		and Flotation Studies 541
	17.8.4	Filtration Studies 541
	Problem	ns/Questions 541
	Referen	nces 542

18 Disinfection and Disinfection By-products Control 545

18.1	Purpose	of Disinfection 545
18.2	Pathoge	ns, Disinfection, and
	Disinfe	ctants 545
18.3	Disinfee	ction by Heat 546
18.4	Disinfee	ction by Ultraviolet Light 546
18.5	Disinfee	ction by Chemicals 546
	18.5.1	Oxidizing Chemicals 546
	18.5.2	Metal Ions 547
	18.5.3	Alkalis and Acids 547
	18.5.4	Surface-Active Chemicals 547
	18.5.5	Advanced Oxidation
		Processes 547
18.6	Theory	of Chemical Disinfection 548
18.7	Kinetics	s of Chemical Disinfection 549
	18.7.1	Time of Contact 549
	18.7.2	Concentration of
		Disinfectant 551

	18.7.3	Temperature of
		Disinfection 551
	18.7.4	Ct Values for Disinfection
		Process Control 552
18.8	Disinfect	tion by Ozone 554
18.9	Disinfect	tion by Chlorine 556
18.10	Free Ava	ilable Chlorine and Free
	Chlorina	tion 556
18.11	Combine	ed Available Chlorine and
	Chloram	ination 558
18.12	Breakpoi	int Reactions of Ammonia 559
18.13	Dechlori	nation 559
18.14	Disinfect	tion by-Products 560
	18.14.1	Formation of Disinfection
		By-products 560
	18.14.2	Strategies for Controlling
		Disinfection By-products 560
18 15	Chemica	1 Technology of
10.12	Disinfect	tion 562
18 16	Operatio	nal Technology of
10.10	Chlorina	tion 562
	18 16 1	Water Chlorination
	10.10.1	Applications 564
	18 16 2	Additional Chlorination
	10.10.2	Applications 566
	18 16 3	Manageable Variables in
	10.10.5	Halogenation 566
18 17	Operatio	nal Technology of Sodium
10.17	Hypochl	orination 567
	18 17 1	Equipment Costs 567
	18.17.2	Operating and Maintenance
	10.17.2	Costs 567
	18 17 3	Chemical Costs 568
18 18	Operatio	nal Technology of Calcium
10.10	Hypochl	orination 570
18 10	Operatio	nal Technology of Chloring
10.19	Diovide	Disinfection 570
18 20	Operatio	nal Technology of
16.20	Ozonatic	$s_{\rm p} = 571$
	18 20 1	Process Description 572
	18.20.1	System Design
	10.20.2	Considerations 573
18 21	Operatio	nal Technology of UV
10.21	Disinfor	574
		UV Disinfaction System
	16.21.1	Design Considerations 574
	10 21 2	LIV Lemp Designs 575
	10.21.2	Eastern Affasting the
	16.21.5	Pactors Affecting the
		Design of the UV
	10 01 4	Disinfection System 5/6
	18.21.4	UV Iransmittance 5//
	18.21.5	UV Equipment
	10.01.6	Configuration 5/7
	18.21.6	UV Lamp Age and Quartz
		Sleeve Fouling 577

18.21.7	UV System Operating and		
	Maintenance		
	Considerations	577	

- 18.21.8 Operation and Maintenance of UV Lamps 578
- 18.21.9 Operation and Maintenance of the Reactor 578
- 18.22 Recent Developments in Disinfection Management—Log Removal/ Inactivation Credits of Drinking Water Treatment Processes 582
 - 18.22.1 Introduction 582
 - 18.22.2 Surface Water Treatment Rule and Long Term 2 Enhanced Surface Water Treatment Rule 582
 18.22.3 Ground Water Rule and

Total Coliform Rule 588 Problems/Questons 589 References 591

19 Chemical Precipitation and Water Softening 593

19.1 **Chemical Precipitation** 593 19.2 **Description of Precipitation Process** 593 19.2.1 Metals Removal 593 19.2.2 Removal of Fats, Oils, and Greases 594 19.2.3 Phosphorus Removal 594 19.2.4 Removal of Suspended 595 Solids 19.2.5 Additional Considerations 595 19.3 Applicability 596 19.4 Advantages and Disadvantages 596 19.5 Design Criteria 596 19.6 Performance—Jar Testing 597 597 19.7 **Operation and Maintenance** 19.8 Costs 598 19.9 Precipitation of Hardness and Carbonates-Water Softening 598 19.10 **Recarbonation After Water Softening** 602 19.11 Recovering Lime After Water Softening 602 Problems/Questions 603 References 603

20 Adsorption and Ion Exchange 605

- 20.1 Adsorption Processes 605
- 20.2Adsorption Kinetics and Equilibria60520.2.1Adsorption Kinetics605

	20.2.2	Conditions of Equilibrium 606			
	20.2.3	Interpretation of Adsorption			
		Isotherms 608			
20.3	Characte	eristics of Adsorbents 608			
-010	20.3.1	Silica Gel 608			
	20.3.1	Activated Carbon 608			
	20.3.2	Polymeria Adaptanta 600			
	20.5.5	Polymenc Adsorbents 009			
	20.3.4	Carbon Properties Relating			
		to Adsorption 609			
20.4	Adsorpti	on of Odors and Tastes 610			
20.5	Pilot Ca	bon Column Tests 612			
20.6	Breakthrough Curve 613				
20.7	Process '	Technology 614			
	20.7.1	Types of Contact Beds 614			
	20.7.2	Design Criteria of Carbon			
	_0	Beds 615			
	2073	Design of an Adsorption			
	20.7.5	Design of an Ausorption			
	20 7 4				
	20.7.4	Carbon Regeneration			
		Systems 622			
20.8	Ion Excl	nange 624			
	20.8.1	Advantages and			
		Disadvantages of Ion			
		Exchange 624			
	20.8.2	System Performance 625			
20.9	Ion Excl	angers 626			
	20.9.1	Synthetic Ion Exchangers 626			
	20.9.2	Activated Alumina and			
	20.7.2	Zeolite 626			
20.10	The Ion	Exchange Process 628			
20.10	Inc Ion	etivity 620			
20.11	Ion Selectivity 630				
20.12	Kinetics	of Ion Exchange 631			
20.13	Ion Exchange Technology 632				
20.14	Water Softening by Ion Exchange 633				
20.15	Demineralization 634				
20.16	Concentration of Ions 635				
20.17	Ion Exch	nange Membranes and			
	Dialysis	635			
20.18	Modular	Treatment Units for			
	Remova	of Radionuclides 636			
20.19	Case Stu	dy I: Nitrate Removal:			
20.17	McFarla	nd CA 636			
20.20	Cose Stu	dy II: Eluorida Pamoval in			
20.20	Cile Der	A = A = C = C = C = C = C = C = C = C =			
	Una Ber	$\frac{10}{10} \text{ AL} \frac{10}{10} \text{ (27)}$			
	Problems/Questions 63/				
	Reference	ces 639			

Chemical Stabilization and Control of 21 **Corrosion and Biofilms** 641

21.1	Chemical Stabilization	641

21.2 Corrosion 643

The Corrosion Reaction 21.3 644 21.3.1 Factors Affecting Corrosion 646 21.3.2 **Corrosion Indices** 646 21.3.3 Consumer Complaints 647 21.3.4 Scale or Pipe Surface Examination 647 Measurement of Corrosion 21.3.5 Rate 647 648 21.4 Control of Corrosion Lead and Copper Corrosion 21.5 650 21.5.1 Health Effects 650 Occurrence as a Corrosion 21.5.2 By-product 650 21.5.3 Diagnosing and Evaluating the Problem 651 21.5.4 Sampling and Chemical Analysis 651 21.6 Lead Corrosion Control 651 21.6.1 **Distribution and Plumbing** System Design Considerations 652 21.6.2 652 Water Quality Modifications 21.6.3 **Corrosion Inhibitors** 654 21.6.4 **Cathodic Protection** 655 21.6.5 Coatings and Linings 655 **Biofilm Control** 21.7 655 Factors That Favor Biofilm 21.7.1 Growth 657 21.7.2 Biofilm Control Strategies 657 Problems/Questions 659 References 660

22 **Residues Management, Safety, and Emergency Response** 661

- 22.1 Management of Residues 661 22.2 Types of Residuals 662 22.3 **Applicable Regulations** 663 **Residual Solids Treatment** 22.4 663 22.5 **Residuals** Disposal 664 22.5.1 Underground Injection 664 22.5.2 Direct Discharge to Surface Waters 664 22.5.3 Discharge to Sewers and WWTP 664 22.5.4 Landfilling 665 22.5.5 Land Application 665 22.6 Selection of Management Plans 666 22.7 Safety and Accident Prevention 670 22.7.1 Safety in Valve Vault Design 670 22.7.2 Safety in Chemical Handling
 - 22.7.3 Safety in the Placement of Valves 671

671

	22.7.4 Safety in Water System					
	Perimeter Fall Protection 672					
22.8	Emergency Response Plan 673					
22.9	Actions Prior to Developing an ERP 674					
22.10	Emergency Response Plan Core					
	Elements 675					
	22.10.1 System-Specific					
	Information 675					
	22.10.2 CWS Roles and					
	Responsibilities 675					
	22.10.3 Communication					
	Procedures (Who, What,					
	and When) 675					
	22.10.4 Personnel Safety 676					
	22.10.5 Identification of Alternate					
	Water Sources 676					
	22.10.6 Replacement Equipment					
	and Chemical Supplies 677					
	22.10.7 Property Protection 677					
	22.10.8 Water Sampling and					
	Monitoring 677					
22.11	Putting the ERP Together and ERP					
	Activation 677					
22.12	Action Plans 678					
22.13	Next Steps 681					
	Problems/Questions 681					
	References 682					

23 Prevention through Design and System Safety 683

23.1	Introduction to System Safety 683				
23.2	Nature and Magnitude of Safety and				
	Health Problems 685				
23.3	Risk Assessment Matrix 687				
	23.3.1 Description 687				
	23.3.2 Procedures 688				
	23.3.3 Advantages and				
	Limitations of the Risk				
	Matrix 693				
23.4	Failure Modes, Effects, and				
	Criticality Analysis 693				
	23.4.1 Description 693				
	23.4.2 Application 693				
	23.4.3 Procedures 693				
	23.4.4 Advantages and				
	Limitations 698				
23.5	Engineering and Design for Safe				
	Construction 698				
	23.5.1 Construction Failures 698				
	23.5.2 Causes of Construction				
	Failures 699				

	23.5.3	Classification of Causal			
		Factors 699			
23.6	Construc	ction Safety and Health			
	Managen	ement 703			
	23.6.1	Safety and Health Program			
		Elements 703			
	23.6.2	Project Safety Rules 704			
	23.6.3	Training and Worker			
		Orientation 704			
	23.6.4	New Worker Orientation 704			
	23.6.5	Accident Investigation and			
		Recordkeeping 706			
	23.6.6	Safety Budget and Audits 706			
23.7	Requiren	nents for Safety in			
	Construc	tion Projects 706			
	23.7.1	Falls 706			
	23.7.2	Excavation and Trenching 707			
	23.7.3	Confined Space Entry 708			
	23.7.4	Heavy Construction			
		Equipment 709			
23.8	Occupati	onal Diseases 710			
	23.8.1	System Approach 710			
	23.8.2	Complexity of the Issues 711			
	23.8.3	Scientific Factors 711			
	23.8.4	Occupational Disease as a			
		Process 712			
	23.8.5	Potential Hazards 712			
	23.8.6	Modes of Entry 712			
	23.8.7	Body Processes and			
		Defenses 713			
	23.8.8	Elimination 714			
23.9	Ergonom	iics 714			
	23.9.1	The Worker and Work 714			
	23.9.2	Adverse Effects Caused by			
		Workplace Conditions 715			
	Problems	s/Questions 715			
	Referenc	es 716			

24 Engineering Projects Management 717

24.1	Role of Engineers 717
24.2	Steps in Project Development 717
	24.2.1 Community Action 717
	24.2.2 Engineering Response 718
24.3	The Engineering Report 718
24.4	Feasibility Studies 719
24.5	Alternatives 719
24.6	Plans and Specifications 720
24.7	Sources of Information 720
24.8	Standards 720
24.9	Design Specifications 721
24.10	Project Construction 721
	24.10.1 Notice to Bidders 721

- General Conditions 721 24.10.2 24.10.3 Special Provisions 722 722 24.10.4 Detailed Specifications 24.10.5 The Proposal 722 24.10.6 The Contract 722 24.11 Project Financing 723 24.12 Methods of Borrowing 725 24.12.1 General Obligation Bonds 725 24.12.2 Revenue Bonds 725 24.12.3 Special Assessment Bonds 725
- 24.13 Rate Making 725

- 24.13.1 Water Rates 725
- 24.13.2 Fire Protection 726
- 24.13.3 Peak-Flow Demands 726
- 24.13.4 Sewer Service Charges 726
- 24.14 Systems Management 726 Problems/Questions 727 References 727
- APPENDIXES 729
- INDEX 797

History of this Book Series: Water and Wastewater Engineering

This book, Water Engineering, is the second textbook in the Water and Wastewater Engineering series, which is a revision of the classic text, originally authored by Professors Gordon M. Fair (Harvard University), John C. Geyer (John Hopkins University), and Daniel A. Okun (University of North Carolina). Professors Daniel A. Okun and Marvin L. Granstorm (Rutger University) were the driving forces of this new global edition that includes both US and SI design equations and examples. The current authors, Professors Nazih K. Shammas and Lawrence K. Wang were the students of Professor Okun, and Professor Granstorm, respectively. Just before beginning the preparation of this new edition of Water and Wastewater Engineering, the last surviving member of the original authors, Professor Daniel A. Okun, died on December 10, 2007. In the normal course of events Professor Okun would have been with the current authors in preparing this book series. This new book series is dedicated to the memory of Professors Fair, Geyer, Okun, and Granstrom.

Goals of this Book: Water Engineering

Today, effective design and efficient operation of water engineering works ask, above all, for a fuller understanding and application of scientific principles. Thus, the results of scientific research are being incorporated with remarkable success in new designs and new operating procedures. Like other fields of engineering, water engineering has its science and its art. To reach the audience to which this book is addressed, the science of water engineering is given principal emphasis. However, the art of water engineering is not neglected. Enough elements of water engineering practice, experience, common sense, and rules of thumb are included to keep the reader aware of the water environment and constructions that place water at the service of cities and towns, and of villages and homesteads.

Further Study in Addition to Classroom Education

The study of scientific principles is best accomplished in the classroom; the application of these principles follows as a matter of practice. To further bridge the way from principle to practice, we suggest that the study of these textbooks be supplemented by (1) visits to water works, (2) examination of plans and specifications of existing water systems, (3) readings in the environmental science and engineering periodicals, (4) study of the data and handbook editions of

trade journals, (5) examination of the catalogs and bulletins of equipment manufacturers, and (6) searching for the latest water engineering developments from the Internet.

Intended Audience

Like its forerunners, this new book, Water Engineering, is intended for students of civil and environmental engineering, no matter whether they belong to the student body of a university or are already established in their profession. Specifically, the target audience is engineering students who have had introductory calculus, chemistry and fluid mechanics, typically civil, environmental and water resources engineering majors. Several chapters of the book contain introductory material appropriate for juniors as well as more advanced material that might only be appropriate for upper-level undergraduate engineering students. Specifically, applied hydrology, hydraulics, and pertinent physical, chemical, and biological properties of water are reviewed. The inclusion of this material makes this book important also to physical and investment planners of urban and regional developments. In this sense, too, this book and other books in the new series should be of interest to chemical engineers, geologists, chemists, and biologists who are collaborators of the water environment.

Course Suggestions

The book is comprehensive and covers all aspects of water including its quality, sources, supply, drinking water standards, treatment, transmission, storage, and distribution. This comprehensive coverage gives faculty the flexibility of choosing the material as they find fit for their courses, and this wide coverage is helpful to water engineers in their everyday practice.

Courses where this book may be used include

- 1. Water engineering
- 2. Water supply, transmission and distribution system
- 3. Water treatment
- 4. Design of water treatment plants
- 5. Design of water distribution networks
- **6.** Civil and sanitary engineering design
- 7. Environmental engineering design
- 8. Hydraulics
- 9. Water resources engineering

Key Features of This Book

Several items unique to this textbook include

- **1. Solved problems.** A reliable problem-solving experience for students is carried out throughout the text and demonstrated in every example problem to reinforce best practices.
- **2. Photos and illustrations.** Photos and illustrations are used throughout the text to clarify water engineering infrastructure systems and show examples of built and constructed water supply, transmission, treatment, storage and distribution facilities.
- **3.** Current water treatment and infrastructure issues. Current infrastructure and global issues are addressed in the text. Examples of such issues include (a) established water treatment technologies; (b) conventional and new pathogenic microorganisms and impurities; (c) *Cryptosporidium*, volatile organic compounds, heavy metals, and disinfection by-products control; (d) flotation, membrane filtration, and UV; (e) groundwater under the direct influence of surface water; (f) dual water systems; (g) cross-connections control and backflow prevention; (h) design nomograms for fast water infrastructure analysis; (i) computer-aided water distribution system modeling and analysis; (j) water safety and emergency response.
- 4. Engineering equations and example problems with both US and SI Units for training engineers to work globally. The text has a multitude of examples and problems. Such problems incorporate both SI and the more customary US unit systems. We feel that most other texts fall short in both these areas by not providing students with examples that help explain difficult technical concepts and by only focusing on one system of units.
- **5. Applied hydraulics.** Hydraulics concepts are critical for the civil, environmental and water resources engineering professionals, and thus the readers. Applied hydraulics topics such as pumps, weirs, pressurized pipe flow, gravity flow, head losses are reviewed in this book for practical design of water-handling facilities.
- 6. Prevention through design, residuals management, and water system safety. Chapter 23 is dedicated to prevention through design (PtD), as it is important for readers to learn about this new strategy. NIOSH is promoting the inclusion of PtD in

undergraduate engineering education, has reviewed this chapter and provided the illustrative case studies described in Chapter 6, Water Distribution Systems: Components, Design, and Operation, and Chapter 22, Residues Management, Safety, and Emergency Response. Other water engineering texts do not address these important topics.

Instructor Resources

The following resources are available to instructors on the book website at:

- **1. Solutions manual.** Complete solutions for every homework problem and answers to all discussion questions in the text will be available to instructors.
- **2. Image gallery.** Images from the text in electronic format, for preparation of lecture PowerPoint slides.
- **3.** Access to student resources. Instructors will also have access to all the student resources.

The instructor resources are password protected, and will be made available to instructors who have adopted the text for their course. Visit the instructor section of the website to register for a password.

Student Resources

The following resources are available to students on the book website at:

- 1. Data sets. Data sets for all examples and homework exercises in the text will be provided, so that students may perform what-if scenarios, and to avoid errors due to data entry during problem solving.
- **2.** Access to design software. Included with the text, so students may download the software from an online source.

Software

Included with this text is access to the software Haestad Methods Water Solutions by Bentley. Software exhibited in the text, include **WaterGEMS** that is used to illustrate the application of various available software programs in helping civil and environmental engineers design and analyze water distribution systems. It is also used by water utility managers as a tool for the efficient operation of distribution systems. See Chapter 7, Water Distribution Systems: Modeling and Computer Applications.

Acknowledgments

B ooks do not come off the press through the efforts of authors alone. Their preparation passes successively through editorial and production stages. The authors would like to thank our colleagues, mentors, Wiley editors/reviewers Michael Leventhal and Bob Esposito, and the resource providers and designers who have guided our efforts along these ways.

Sincere appreciations are extended to the families of Professors Fair, Geyer, Okun, and Granstrom, and the reviewers whose suggestions and comments have significantly improved the overall quality of this book series.

We also thank Dr. Richard Rinehart, Prevention through Design National Initiative at NIOSH, who reviewed PtD (Chapter 23), and Dr. Carolyn M. Jones (SFPUC Health and Safety Program Manager at NIOSH), who provided the case studies included in Chapters 6 and 22. A book is not written in long evenings and on holidays without the consent, encouragement, and cooperation of the writers' families. This, too, should be a matter of record.

Nazih K. Shammas

American University of Beirut, Lebanon (BE)

University of North Carolina at Chapel Hill, NC, USA (MSSE)

University of Michigan, Ann Arbor, MI, USA (PhD)

Lawrence K. Wang

- National Cheng Kung University, Tainan, Taiwan, ROC (BSCE)
- Missouri University of Science and Technology, Rolla, MO, USA (MSCE)

University of Rhode Island, Kingston, RI, USA (MS)

Rutgers University, New Brunswick, NJ, USA (PhD)

Introduction to Water Systems

T he right to water is an implicit part of the right to an adequate standard of living and the right to the highest attainable standard of physical and mental health, both of which are protected by the United Nations' *International Covenant on Economic, Social and Cultural Rights,* which was established in 1976. However, some countries continue to deny the legitimacy of this right. In light of this fact and because of the widespread noncompliance of states with their obligations regarding the right to water, the United Nations' Committee on Economic, Social and Cultural Rights confirmed and further defined the right to water in its General Comment No. 15 in 2002. The comment clearly states that the right to water emanates from and is indispensable for an adequate standard of living as it is one of the most fundamental conditions for survival:

The human right to water entitles everyone to sufficient, safe, acceptable, physically accessible and affordable water for personal and domestic uses. An adequate amount of safe water is necessary to prevent death from dehydration, reduce the risk of water-related disease and provide for consumption, cooking, personal and domestic hygienic requirements.

According to the World Health Organization (WHO), 1.1 billion people (17% of the global population) lack access to safe drinking water, meaning that they have to revert to unprotected wells or springs, canals, lakes, or rivers to fetch water; 2.6 billion people lack adequate sanitation; and 1.8 million people die every year from diarrheal diseases, including 90% of children under age 5. This situation is no longer bearable. To meet the WHO's *Water for Life Decade (2005– 2015)*, an additional 260,000 people per day need to gain access to improved water sources.

In 2004 about 3.5 billion people worldwide (54% of the global population) had access to piped water supply through house connections. Another 1.3 billion (20%) had access to safe water through other means than house connections, including standpipes, "water kiosks," protected springs, and protected wells.

In the United States 95% of the population that is served by community water systems receives drinking water that meets all applicable health-based drinking water standards through effective treatment and source water protection. In 2007, approximately 156,000 US public drinking water systems served more than 306 million people. Each of these systems regularly supplied drinking water to at least 25 people or 15 service connections. Beyond their common purpose, the 156,000 systems vary widely. Table 1.1 groups water systems into categories that show their similarities and differences. For example, the table shows that most people in the United States (286 million) get their water from a community water system. Of the approximately 52,000 community water systems, just 8% of those systems (4048) serve 82% of the people.

Water is used in population centers for many purposes: (a) for drinking and culinary uses; (b) for washing, bathing, and laundering; (c) for cleaning windows, walls, and floors; (d) for heating and air conditioning; (e) for watering lawns and gardens; (f) for sprinkling and cleaning streets; (g) for filling swimming and wading pools; (h) for display in fountains and cascades; (i) for producing hydraulic and steam power; (j) for employment in numerous and varied industrial processes; (k) for protecting life and property against fire; and (1) for removing offensive and potentially dangerous wastes from households, commercial establishments, and industries. To provide for these varying uses, which total about 100 gallons per capita per day (gpcd) or 378 liters per capita per day (Lpcd) in average North American residential communities and 150 gpcd (568 Lpcd) or more in large industrial cities, the supply of water must be satisfactory in quality and adequate in quantity, readily available to the user, relatively cheap, and easily disposed of after it has served its many purposes. Necessary engineering works are waterworks, or water supply systems, and wastewater works, or wastewater management systems.

Waterworks withdraw water from natural sources of supply, purify it if necessary, and deliver it to the consumer. Wastewater works collect the spent water of the community—about 70% of the water supplied—together with varying amounts of entering ground and surface waters.

Water Engineering: Hydraulics, Distribution and Treatment, First Edition. Nazih K. Shammas and Lawrence K. Wang © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

Water system		Very small (500 or less)	Small (501–3,300)	Medium (3,301–10,000)	Large (10,001–100,000)	Very large (>100,000)	Total
Community water system ^a	No. of systems Population served	29,282 4,857,007	13,906 19,848,329	4,822 27,942,486	3,702 105,195,727	398 128,607,655	52,110 286,451,204
	Percentage of systems	56	27	9	7	1	100
	Percentage of population	2	7	10	37	45	100
Nontransient	No. of systems	16,034	2,662	120	22	1	18,839
noncommunity water system ^b	Population served	2,247,556	2,710,330	639,561	533,845	203,000	6,334,292
	Percentage of systems	85	14	1	0	0	100
	Percentage of population	35	43	10	8	3	100
Transient noncommunity water system ^c	No. of systems	81,873	2,751	102	15	3	84,744
	Population served	7,230,344	2,681,373	546,481	424,662	2,869,000	13,751,860
	Percentage of systems	97	3	0	0	0	100
	Percentage of population	53	19	4	3	21	100
Total no. of system	S	127,189	19,319	5,044	3,739	402	155,693

 Table 1.1
 US public water systems size by population served in 2007

Source: Courtesy US Environmental Protection Agency.

^aCommunity water system: a public water system that supplies water to the same population year-round.

^bNontransient noncommunity water system: a public water system that regularly supplies water to at least 25 of the same people at least 6 months per year, but not year-round. Some examples are schools, factories, office buildings, and hospitals that have their own water systems.

^cTransient noncommunity water system: a public water system that provides water in a place such as a gas station or campground where people do not remain for long periods of time.

The collected wastewaters are treated and reused or discharged, usually into a natural water body, more rarely onto land. Often the receiving body of water continues to serve also as a source of important water supplies for many purposes. It is this multiple use of natural waters that creates the most impelling reasons for sound water quality management.

1.1 COMPONENTS OF WATER SYSTEMS

Each section of this chapter offers, in a sense, a preview of matters discussed at length in later parts of this book. There they are dealt with as isolated topics to be mastered in detail. Here they appear in sequence as parts of the whole so that their general purpose and significance in the scheme of things may be understood and may give reason for closer study.

Municipal water systems generally comprise (a) *collection works*, (b) *purification works*, (c) *transmission works*, and (d) *distribution works*. The relative functions and positions of these components in a surface water supply are sketched in Fig. 1.1. Collection works either tap a source continuously adequate in volume for present and reasonable future demands or convert an intermittently insufficient source into a continuously adequate supply. To ensure

adequacy, seasonal and, in large developments, even annual surpluses must be stored for use in times of insufficiency. When the quality of the water collected is not satisfactory, purification works are introduced to render it suitable for the purposes it must serve: contaminated water is disinfected; aesthetically displeasing water made attractive and palatable; water containing iron or manganese deferrized or demanganized; corrosive water deactivated; and hard water softened. Transmission works convey the collected and purified supply to the community, where distribution works dispense it to consumers in wanted volume at adequate pressure. Ordinarily, the water delivered is metered so that an equitable charge can be made for its use and, often, also for its disposal after use.

1.2 REQUIRED CAPACITY

Water supply systems are designed to meet population needs for a reasonable number of years in the future. The rate of consumption is normally expressed as the mean annual use in gpcd or Lpcd, and seasonal, monthly, daily, and hourly departures in rate are given in percentages of the mean. In North America the spread in consumption is large: from

35 to 500 gpcd (132–1890 Lpcd), varying radically with industrial water demands. Average rates between 100 and 200 gpcd (378–757 Lpcd) are common, and a generalized average of 150 gpcd (568 Lpcd) is a useful guide to normal requirements.

The capacity of individual system components is set by what is expected of them. Distribution systems, for example, must be large enough to combat and control serious conflagrations without failing to supply maximum *coincident* domestic and industrial drafts. Fire demands vary with size and value of properties to be protected and are normally a function of the gross size of the community. The distribution system leading to the high-value district of an average American city of 100,000 people, for example, must have an excess of *fire standby* capacity equal in itself to the average rate of draft. For smaller or larger American communities, the standby capacity falls or rises, within certain limits, more or less in proportion to the square root of the population.

1.3 SOURCES OF WATER SUPPLY

The source of water commonly determines the nature of the collection, purification, transmission, and distribution works. Common sources of freshwater and their development are as follows:

- 1. Rainwater:
 - (a) From roofs, stored in cisterns, for small individual supplies.

- Figure 1.1 Rainfall, runoff, storage, and draft relations in the development of surface water (conversion factors: $1 \text{ mi}^2 = 2.59 \text{ km}^2$; 1 in./yr = 25.4 mm/yr; 1 ft = 0.3048 m; $1 \text{ MG/yr/mi}^2 = 1.46 \text{ ML/yr/km}^2$; $1 \text{ gpd/mi}^2 = 1.461 \text{ L/d/km}^2$; 1 billion gal = 1 BG =3.785 billion L = 3.785 BL; 1 gpcd = 3.785 Lpcd; 1 MGD = 3.785 MLD).
- (b) From larger, prepared watersheds, or catches, stored in reservoirs, for large communal supplies.
- 2. Surface water:
 - (a) From streams, natural ponds, and lakes of sufficient size, by continuous draft.
 - (b) From streams with adequate flood flows, by intermittent, seasonal, or selective draft of clean floodwaters, and their storage in reservoirs adjacent to the streams, or otherwise readily accessible from them.
 - (c) From streams with low dry-weather flows but sufficient annual discharge, by continuous draft through storage of necessary flows in excess of daily use in one or more reservoirs impounded by dams thrown across the stream valleys.
 - (d) From brackish and seawater by desalination. Desalination is an artificial process by which saline water is converted to freshwater. The most common desalination processes are distillation and reverse osmosis. Desalination is currently expensive compared to most alternative sources of water, and only a small fraction of total human use is satisfied by desalination. It is only economically practical for high-valued uses (such as household and industrial uses) in arid areas. The most extensive use is in the Persian (Arabian) Gulf. Mildly saline waters (brackish) are desalted most economically by reverse osmosis;

strongly saline waters by evaporation and condensation.

- 3. Groundwater:
 - (a) From natural springs.
 - (b) From wells.
 - (c) From infiltration galleries, basins, or cribs.
 - (d) From wells, galleries, and, possibly, springs, with flows augmented from some other source (i) spread on the surface of the gathering ground, (ii) carried into charging basins or ditches, or (iii) led into diffusion galleries or wells.
 - (e) From wells or galleries with flows maintained by returning to the ground the water previously withdrawn from the same aquifer for cooling or similar purposes.

Several schemes have been proposed to make use of *icebergs* as a water source; to date, however, this has only been done for novelty purposes. One of the serious moves toward the practical use of icebergs is the formation of an Arabian–American investment group to search for the optimal way to transport and melt icebergs for use as a source of drinking water supply without the need for on-land storage. Glacier runoff is considered to be surface water.

An iceberg is a large piece of freshwater ice that has broken off from a snow-formed glacier or ice shelf and is floating in open water. Because the density of pure ice is about 920 kg/m³ and that of sea water about 1025 kg/m³, typically only one-tenth of the volume of an iceberg is above water. The shape of the rest of the iceberg under the water can be difficult to surmise from looking at what is visible above the surface. Icebergs generally range from 1 to 75 m (about 3–250 ft) above sea level and weigh 100,000–200,000 metric tonne (about 110,000–220,000 short ton). The tallest known iceberg in the North Atlantic was 168 m (about 551 ft) above sea level, making it the height of a 55 story building. Despite their size, icebergs move an average of 17 km (about 10 mi) a day. These icebergs originate from glaciers and may have an interior temperature of -15° C to -20° C (5°F to -4° F).

Municipal supplies may be derived from more than one source, the yields of available sources ordinarily being combined before distribution. *Dual public water supplies* (see Chapter 8) of unequal quality are unusual in North America. However, they do exist, for example, as a high-grade supply for general municipal uses and a lowgrade supply for specific industrial purposes or firefighting. Unless the low-grade (nonpotable) supply is rigorously disinfected, its existence is frowned on by health authorities because it may be cross-connected, wittingly or unwittingly, with the high-grade (potable) supply. A *cross-connection* is defined as a junction between water supply systems through which water from doubtful or unsafe sources may enter an otherwise safe supply.

1.4 RAINWATER

Rain is rarely the immediate provenance of municipal water supplies. Instead, the capture of rainwater is confined to farms and rural settlements usually in semiarid regions devoid of satisfactory ground or surface waters. On homesteads, rainwater running off roofs is led through gutters and downspouts to rain barrels or cisterns situated on or in the ground. Storage transforms the intermittent rainfall into a continuous supply. For municipal service, sheds or catches on ground that is naturally impervious or made tight by grouting, cementing, paving, or similar means must usually be added.

The gross yield of rainwater is proportional to the receiving area and the amount of precipitation. However, some rain

EXAMPLE 1.1 CALCULATING THE VOLUME OF RAINFALL THAT CAN BE COLLECTED FROM A BUILDING ROOF

Make a rough estimate of the volume in gallons or liters of water that can be caught by $3,000 \text{ ft}^2 (278.7 \text{ m}^2)$ of horizontally projected roof area (the average area of American farm buildings) in a region where the mean annual rainfall is 15 in. (38.1 cm).

Solution 1 (US Customary System):

Gross yield = $3,000 \text{ ft}^2 \times (15/12 \text{ ft}) \times 7.48 \text{ gal/ft}^3 = 28,100 \text{ gal annually} = 28,100 \text{ gal/365 days} = 77 \text{ gpd.}$

Net yield approximates two-thirds gross yield = 18,800 gal annually = 51 gpd.

About half the net annual yield, or 9,400 gal = 1,250 ft³, must normally be stored to tide the supply over dry spells.

Solution 2 (SI System):

Gross yield = $(278.7 \text{ m}^2)(38.1/100 \text{ m})(1,000 \text{ L/m}^3) = 106,178 \text{ L}$ annually = 291 L/day = 291 L/d.

Net yield approximates two-thirds gross yield = 291 L/d (2/3) = 194 L/d = 70,790 L/year.

About half the net annual yield = $0.5 (70,790 \text{ L/year}) = 35,395 \text{ L} = 35.4 \text{ m}^3$ must be stored to tide the supply over dry spells.

is blown off the roof, evaporated, or lost in wetting the collecting surfaces and conduits and in filling depressions or improperly pitched gutters. Also, the first flush of water may have to be wasted because it contains dust, bird droppings, and other unwanted materials. The combined loss may be high. A cutoff, switch, or deflector in the downspout permits selective diversion of unwanted water from the system. Sand filters will cleanse the water as it enters the cistern and prevent its deterioration via the growth of undesirable organisms and consequent tastes, odors, and other changes in attractiveness and palatability.

The storage to be provided in *cisterns* depends on the distribution of rainfall. Storage varies with the length of dry spells and commonly approximates one-third to one-half the annual consumption. If rainfalls of high intensity are to be captured, standby capacity must exist in advance of filtration. Because their area is small, roofs seldom yield much water. A careful analysis of storm rainfalls and seasonal variations in precipitation is, therefore, required.

1.5 SURFACE WATER

In North America by far the largest volumes of municipal water are collected from surface sources. The quantities that can be gathered vary directly with the size of the catchment area, or watershed, and with the difference between the amounts of water falling on it and the amounts lost by evapotranspiration. The significance of these relationships to water supply is illustrated in Fig. 1.1. Where surface water and groundwater sheds do not coincide, some groundwater may enter from neighboring catchment areas or escape to them.

1.5.1 Continuous Draft

Communities on or near streams, ponds, or lakes may take their supplies from them by continuous draft if stream flow and pond or lake capacity are high enough at all seasons of the year to furnish requisite water volumes. Collecting works ordinarily include (a) an intake crib, gatehouse, or tower; (b) an intake conduit; and (c) in many places, a pumping station. On small streams serving communities of moderate size, an intake or diversion dam may create sufficient depth of water to submerge the intake pipe and protect it against ice. From intakes close to the community the water must generally be lifted to purification works and thence to the distribution system.

Most large streams are polluted by wastes from upstream communities and industries. Purification of their waters is then a necessity. Cities on large lakes usually guard their supplies against their own and their neighbor's wastewater and spent industrial-process waters by moving their intakes far away from shore and purifying both their water and wastewater. Diversion of wastewater from lakes will retard the lakes' eutrophication.

1.5.2 Selective Draft

Low stream flows are often left untouched. They may be wanted for other downstream purposes or they may be too highly polluted for reasonable use. Only clean floodwaters are then diverted into reservoirs constructed in meadow lands adjacent to the stream or otherwise conveniently available. The amount of water so stored must supply demands during seasons of unavailable stream flow. If draft is confined to a quarter year, for example, the reservoir must hold at least three-fourths of the annual supply. In spite of its selection and long storage, the water may have to be purified.

1.5.3 Impoundage

In their search for clean water and water that can be brought and distributed to the community by gravity, engineers have developed supplies from upland streams. Most of them are tapped near their source in high and sparsely settled regions. To be of use, their annual discharge must equal or exceed the demands of the community they serve for a reasonable number of years in the future. Because their dry season flows generally fall short of concurrent municipal requirements, their floodwaters must usually be stored in sufficient volume to ensure an adequate supply. Necessary reservoirs are impounded by throwing dams across the stream valley. In this way, amounts up to the mean annual flow can be utilized. The area draining to an impoundment is known as the catchment area or watershed. Its economical development depends on the value of water in the region, but it is a function, too, of runoff and its variation, accessibility of catchment areas, interference with existing water rights, and costs of construction. Allowances must be made for evaporation from new water surfaces generated by the impoundage (Fig. 1.2) and also often for release of agreed-on flows to the valley below the dam (compensating water). Increased ground storage in the flooded area and the gradual diminution of reservoir volumes by siltation must also be considered.

Intake structures are incorporated in impounding dams or kept separate. Other important components of impounding reservoirs are (a) spillways safely passing floods in excess of reservoir capacity and (b) diversion conduits safely carrying the stream past the construction site until the reservoir has been completed and its spillway can go into action. Analysis of flood records enters into the design of these ancillary structures.

Some impounded supplies are sufficiently safe, attractive, and palatable to be used without treatment other than protective disinfection. However, it may be necessary to remove high color imparted to the stored water by the decomposition of organic matter in swamps and on the flooded valley bottom; odors and tastes generated in the decomposition or growth of algae, especially during the first years after filling; and turbidity (finely divided clay or silt) carried into streams or reservoirs by surface wash, wave action, or bank

Figure 1.2 A watershed lake in Western Missouri provides water supply (Courtesy of the National Resources Conservation Service and USDA).

erosion. Recreational uses of watersheds and reservoirs may call for treatment of the flows withdrawn from storage.

Much of the water in streams, ponds, lakes, and reservoirs in times of drought, or when precipitation is frozen, is seepage from the soil. Nevertheless, it is classified as surface

runoff rather than groundwater. Water seeps *from* the ground when surface streams are low and *to* the ground when surface streams are high. Release of water from ground storage or from accumulations of snow in high mountains is a determining factor in the yield of some catchment areas. Although surface waters are derived ultimately from precipitation, the relations between precipitation, runoff, infiltration, evaporation, and transpiration are so complex that engineers rightly prefer to base calculations of yield on available stream gaugings. For adequate information, gaugings must extend over a considerable number of years.

1.6 GROUNDWATER

Smaller in daily delivery, but many times more numerous than surface water supplies, are the municipal and private groundwater supplies of North America. Groundwater is drawn from many different geological formations: (a) from the pores of alluvial (water-borne), glacial, or aeolian (windblown) deposits of granular, unconsolidated materials such as sand and gravel, and from consolidated materials such as sandstone; (b) from the solution passages, caverns, and cleavage planes of sedimentary rocks such as limestone, slate, and shale; (c) from the fractures and fissures of igneous rocks; and (d) from combinations of these unconsolidated and consolidated geological formations. Groundwater sources, too, have an intake or catchment area, but the catch, or recharge, is by infiltration into soil openings rather than by runoff over its surface. The intake area may be nearby or a considerable distance away, especially when flow is confined within a water-bearing stratum or *aquifer* (from Latin *aqua*, "water," and ferre, "to bear") underlying an impervious stratum or aquiclude (from Latin aqua, "water," and cludere, "to shut" or "to close out").

EXAMPLE 1.2 ESTIMATES OF YIELDS FROM WATERSHEDS AND STORAGE REQUIREMENTS

Certain rough estimates of the yield of surface watersheds and storage requirements are shown in Fig. 1.1. Rainfall is used as the point of departure, merely to identify the dimensions of possible rainfall–runoff relationships. Determine

- 1. The yields from the watersheds,
- 2. The storage requirements,
- **3.** The number of people who can be supported by a drainage area of 100 mi² (259 km²) if there is adequate impoundage for water storage, and
- **4.** The number of people who can be supported by a drainage area of 100 mi² (259 km²) if there is no impoundage for water storage.

The following assumptions are made: (a) rainfall = 20 in./km^2 annually = 19.6 cm/km^2 , (b) a stream flow of about 1 MGD/km² (million gallons per day per square mile) or (1.547 ft^3 /s)/km² [or 1.46 MLD/km^2 (million liters per day per square kilometer)] is a good average for the well-watered sections of North America, (c) for 75% development ($0.75 \times 1 \text{ MGD/km}^2$ or $0.75 \times 1.46 \text{ MLD/km}^2$), about half a year's supply must generally be stored. In semiarid regions storage of three times the mean annual stream flow is not uncommon, that is, water is held over from wet years to supply demands during dry years, (d) average water consumption = 150 gpcd = 567.8 Lpcd, (e) for water supply by continuous draft, low water flows rather than average annual yields govern. In well-watered sections of North America, these approximate 0.1 ft³/s or 64,600 gpd/km² (or 28.32 L/s, or 0.094316 MLD/km²).

Solution 1 (US Customary System):

1. The following conversion factors and approximations are being employed:

1 in. rainfall/km² = 17.378 MG Hence, 20 in./km² annually = $20 \times 17.378 = 348$ MG or 348/365 = 0.952 MGD.

2. A stream flow of about 1 MGD/km² is a good average for the well-watered sections of North America. Not all of it can be adduced economically by storage.

For 75% development (0.75 MGD/km², or 750,000 gpd/km²), about half a year's supply must generally be stored. For a catchment area of 100 km², therefore

Storage = $(0.75 \text{ MGD/km}^2)(100 \text{ km}^2) \times (0.5 \times 365 \text{ days}) = 13,688 \text{ MG} = 13.5 \text{ BG}$ (billion gallons) approximately.

In semiarid regions storage of three times the mean annual stream flow is not uncommon, that is, water is held over from wet years to supply demands during dry years.

- 3. For an average consumption of 150 gpcd, the drainage area of 100 km^2 and impoundage of 13.5 BG will supply a population of $100 \times 750,000/150 = 500,000 \text{ persons}.$
- 4. For water supply by continuous draft, low water flows rather than average annual yields govern. In well-watered sections of North America, these approximate 0.1 ft³/s or 64,600 gpd/km². A catchment area of 100 km², therefore, can supply without storage

100 × 64,600/150 = **43,000 people**.

This is compared against 500,000 people in the presence of proper storage.

Solution 2 (SI System):

1. The following conversion factors and approximations are being employed:

 $1 \text{ cm/km}^2 = 67.12 \text{ ML} \text{ (million liters)}$

Hence, 19.6 cm/km^2 annually = $19.6 \times 67.12 = 1315.6 \text{ ML}$ annually = **3.6 MLD**.

2. A stream flow of about 1.46 MLD/km² is a good average for the well-watered sections of North America. Not all of it can be adduced economically by storage.

For 75% development ($0.75 \times 1.46 \text{ MLD/km}^2$), about half a year's supply must generally be stored. For a catchment area of 259 km², therefore

Storage = $0.75(1.46 \text{ MLD/km}^2)(259 \text{ km}^2)(0.5 \times 365) = 51,758 \text{ ML} = 51.758 \text{ BL}$ (billion liters).

In semiarid regions storage of three times the mean annual stream flow is not uncommon, that is, water is held over from wet years to supply demands during dry years.

3. For an average consumption of 567.8 Lpcd, the drainage area of 259 km² and impoundage of 51.758 BL will supply a population of

 $(0.75 \times 1.46 \text{ MLD/km}^2)(259 \text{ km}^2)(1,000,000 \text{ L/ML})/(567.8 \text{ Lpcd}) = 500,000 \text{ persons}.$

4. For water supply by continuous draft, low water flows rather than average annual yields govern. In well-watered sections of North America these approximate 28.32 L/s or 0.094316 MLD/km².

A catchment area of 259 km², therefore, can supply without storage

 $(259 \text{ km}^2)(0.094316 \text{ MLD/km}^2)(1,000,000 \text{ L/ML})/(567.8 \text{ Lpcd}) = 43,000 \text{ people}.$

This is compared against 500,000 people in the presence of proper storage.